عنوان مقاله:

An algebraic construction of QC-LDPC codes based on powers of primitive elements in a finite field and free of small ETSs

محل انتشار:

دوفصلنامه ساختارهای جبری و کاربرد آنها, دوره 6, شماره 1 (سال: 1398)

تعداد صفحات اصل مقاله: 12

نویسندگان:

.Farzane Amirzade Dana - Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Iran

Meysam Alishahi - Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Iran

Mohammad-Reza Rafsanjani Sadeghi - Department of mathematics and computer Science, Amirkabir University of Technology, Tehran, Iran

خلاصه مقاله:

An (a,b) elementary trapping set (ETS), where a and b denote the size and the number of unsatisfied check nodes in the ETS, influences the performance of low-density parity-check (LDPC) codes. The smallest size of an ETS in LDPC codes with column weight Υ and girth F is F. In this paper, we concentrate on a well-known algebraic-based construction of girth-F QC-LDPC codes based on powers of a primitive element in a finite field \mathbb{F}_q. For this structure, we provide the sufficient conditions to obtain Υ \times n submatrices of an exponent matrix in constructing girth-F QC-LDPC codes whose ETSs have the size of at least Δ . For structures on finite field \mathbb{F}_q, where q is a power of Υ , all non-isomorphic Υ \times n submatrices of the exponent matrix which yield QC-LDPC codes free of .small ETSs are presented

کلمات کلیدی:

QC-LDPC codes, girth, Tanner graph, elementary trapping set

لینک ثابت مقاله در پایگاه سیویلیکا:

https://civilica.com/doc/1579964

