Airfoil Shape Optimization of a Horizontal Axis Wind Turbine Blade using a Discrete Adjoint Solver

Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 153

This Paper With 15 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JAFM-16-4_008

تاریخ نمایه سازی: 19 بهمن 1401

Abstract:

In this study, airfoil shape optimization of a wind turbine blade is performed using the ANSYS Fluent Adjoint Solver. The aim of this optimization process is to increase the wind turbine output power, and the objective function is to maximize the airfoil lift to drag ratio (Cl/CD ). This study is applied to the NREL phase VI wind turbine, therefore, the S۸۰۹ airfoil is used as a reference profile. First, for the validation of the applied numerical model, steady-state simulations are carried out for the S۸۰۹ airfoil at various angles of attack. Then, the optimization is performed with the airfoil set at a fixed angle of attack, , considering three Reynolds numbers, Re =۳ ۱۰۵,۴.۸ ۱۰۵  and ۱۰۶. Next, computations are performed for the fluid flow around the optimized airfoils at angles of attack AOA= ۶.۱° ranging from ۰° to ۲۰°. The results show that (i) the lift to drag ratios of the optimized airfoils are significantly improved compared to the baseline S۸۰۹ airfoil, (ii) this improvement is sensitive to the Reynolds number, and (iii) the Cl/CD ratios are also improved for another angle of attack values. Thereafter, the optimized airfoils are used for the design of the NREL Phase VI blade and the aerodynamic performances of this new wind turbine are assessed using the open-source code QBlade. These latter results indicate that when the blades are designed with the optimized airfoils, the wind turbine aerodynamic performances increase significantly. Indeed, at a wind speed of ۱۰ m/s, the power output of the wind turbine is improved by about ۳۸% compared to that of the original turbine.

Authors

A. Boudis

Centre de Développement des Energies Renouvelables, CDER, B.P ۶۲ Route de l’Observatoire, ۱۶۳۴۰, Bouzaréah, Alger, Algerie

D. Hamane

Centre de Développement des Energies Renouvelables, CDER, B.P ۶۲ Route de l’Observatoire, ۱۶۳۴۰, Bouzaréah, Alger, Algerie

O. Guerri

Centre de Développement des Energies Renouvelables, CDER, B.P ۶۲ Route de l’Observatoire, ۱۶۳۴۰, Bouzaréah, Alger, Algerie

A. C. Bayeul-Lainé

Univ. Lille, CNRS, ONERA, Arts et Metiers Institute of Technology, Centrale Lille, UMR ۹۰۱۴ – LMFL - Laboratoire de Mécanique des Fluides de Lille - Kampé de Fériet, F-۵۹۰۰۰ Lille, France

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Akram, M. T. and M. H. Kim (۲۰۲۱). Aerodynamic Shape ...
  • Ali, B., G. Ouahiba, O. Hamid and B. Ahmed (۲۰۱۹). ...
  • ANSYS Fluent User’s Guide, Release ۲۰۲۰ R۲ ...
  • Bekhti, A., O. Guerri and T. Rezoug (۲۰۱۶). Flap/lead-lag computational ...
  • Chen, J., Q. Wang, S. Zhang, P. Eecen and F. ...
  • Day, H., D. Ingham, L. Ma and M. Pourkashanian (۲۰۲۱). ...
  • Derakhshan, S., A. Tavaziani and N. Kasaeian (۲۰۱۵). Numerical shape ...
  • Dhert, T., T. Ashuri and J. R. R. A. Martins ...
  • Ge, M., H. Zhang, Y. Wu and Y. Li (۲۰۱۹). ...
  • Grasso, F. (۲۰۱۲). Hybrid optimization for wind turbine thick airfoils. ...
  • Guma, G., G. Bangga, T. Lutz and E. Krämer (۲۰۲۱). ...
  • He, Y. and R. K. Agarwal (۲۰۱۴). Shape Optimization of ...
  • Johansen, J. (۱۹۹۹). Unsteady Airfoil Flows with Application to Aeroelastic ...
  • Kamali Moghadam, R., H. Jalali and A. Haghiri (۲۰۲۰). Wave ...
  • Karbasian, H. R., J. A. Esfahani and E. Barati (۲۰۱۶). ...
  • Khalil, Y., L. Tenghiri, F. Abdi and A. Bentamy (۲۰۲۰). ...
  • Li, H. C., Z. M. Yang, L. Zhang and R. ...
  • Li, J. Y., R. Li, Y. Gao and J. Huang, ...
  • Li, S., Y. Li, C. Yang, X. Zhang, Q. Wang, ...
  • Menter, F. R. (۱۹۹۴). Two-equation eddy-viscosity turbulence models for engineering ...
  • Moshfeghi, M. and N. Hur (۲۰۱۷). Numerical study on the ...
  • Munoz-Paniagua, J., J. García, A. Crespo and F. Laspougeas (۲۰۱۵). ...
  • Nadarajah, S. K. and A. Jameson (۲۰۰۰). A comparison of ...
  • Perez-Blanco, H. and M. McCaffrey (۲۰۱۳). Aerodynamic performance of preferred ...
  • Ramsay, R., Hoffman, M., and Gregorek, G. (۱۹۹۵). Effects of ...
  • Ribeiro, A. F. P., A. M. Awruch and H. M. ...
  • Rodriguez, C. V. and C. Celis (۲۰۲۲). Design optimization methodology ...
  • Sale, D., A. Alberto, M. Michael and Y. Li (۲۰۱۳). ...
  • Schramm, M., B. Stoevesandt and J. Peinke (۲۰۱۸). Optimization of ...
  • Shi, X., S. Xu, L. Ding and D. Huang (۲۰۱۹). ...
  • Simms, D. A., M. M. Hand, L. J. Fingersh and ...
  • Somers, D. M. (۱۹۹۷). Design and Experimental Results for the ...
  • Tahani, M., G. Kavari, M. Masdari and M. Mirhosseini (۲۰۱۷). ...
  • Timmer, W. A. and R. P. J. O. M. Van ...
  • Viterna, L. A. and D. C. Janetzke (۱۹۸۲). Theoretical and ...
  • Vučina, D., I. Marinić-Kragić and Z. Milas (۲۰۱۶). Numerical models ...
  • Wang, H., B. Zhang, Q. Qiu and X. Xu (۲۰۱۷). ...
  • Wang, L., X. Liu and A. Kolios (۲۰۱۶). State of ...
  • Xudong, W., W. Z. Shen, W. J. Zhu, J. N. ...
  • Zhong, J., J. Li and P. Guo (۲۰۱۷). Effects of ...
  • نمایش کامل مراجع