Numerical Study of Flow Control on Simplified High-Lift Configurations

Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 153

This Paper With 21 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JAFM-16-4_002

تاریخ نمایه سازی: 19 بهمن 1401

Abstract:

Enhancement in the aerodynamic performance of wings and airfoils is very notable when Active Flow Control (AFC) is applied to Short Take-off and Landing aircraft (STOL). The present numerical study shows the application of steady, pulsed and synthetic tangential jets applied to the plain flap shoulder of a modified NASA Trapezoidal Wing. Pulsed jets are modeled by sinusoidal and square waveforms while synthetic jets are modeled only by pure sine waveform. The freestream airflow conditions are Mach number equal to ۰.۲ and Reynolds number equal to ۴.۳ million based on the mean aerodynamic chord. The presented simulations are two-dimensional and based on RANS for steady jet cases and URANS for pulsed and synthetic cases, compiled with the open-source suite SU۲ and adapted for time varying boundary conditions. Numerical results for modified configurations based on the same baseline wing profile considering different leading edges, jet slot height, flap position, blowing mass flow, type and frequency of the jets are presented. Curves of pressure coefficient distribution revealed a substantial influence upstream of the AFC, around the slat and main element. The jet slot height analysis showed that the lift gain is also influenced by the slot size due to the change of the local flow velocity considering the same blowing momentum coefficient. Regarding the jet frequency, no significant differences on the lift coefficients were found between the reduced frequencies F+ equal to ۱ and ۲. Results of aerodynamic loads showed an improved lift coefficient in relation to the baseline airfoil when pulsed and steady jets are employed. Pulsed jets under square waveform were effective even at high deflected flap condition at ۵۰°, with a significant gain in the lift coefficient of ۳۶%, in relation to the uncontrolled case, combined with a drag reduction of ۲۰%, and a decrease in mass flow up to ۴۹% in relation to the steady jet for the same lift gain. Although sine and square waveform results presented similar improvements for lift, the drag is around ۱۵% higher for the former. When compared with the steady jet case, the mass flow reduction is ۳۶% for the sinewave. Synthetic jets with zero-net-mass-flux proved superior to the baseline conventional multi-element airfoil only with deployed flap at ۵۰°, where a modest lift improvement of ۵% was observed.

Authors

B. Goffert

Technological Institute of Aeronautics, São José dos Campos, SP, ۱۲۲۲۸-۹۰۰, Brazil

R. S. Silva

Institute of Aeronautics and Space, São José dos Campos, SP, ۱۲۲۲۴-۹۰۴, Brazil

C. P. F. Francisco

Technological Institute of Aeronautics, São José dos Campos, SP, ۱۲۲۲۸-۹۰۰, Brazil

M. L. C. C. Reis

Technological Institute of Aeronautics, São José dos Campos, SP, ۱۲۲۲۸-۹۰۰, Brazil

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Abbott, I. H. and A. Von Doenhoff (۱۹۵۹). Theory of ...
  • Abramova, K. A., A.V. Petrov, A. V. Potapchik and V. ...
  • Anders, S. G., W. L. Sellers III and A. E. ...
  • Bushnell, D. M. and I. Wygnanski (۲۰۲۰). Flow control applications. ...
  • Cattafesta, L. N. and M. Sheplak (۲۰۱۱). Actuators for active ...
  • Celik, I. B.; U. Ghia, P. J. Roache and C. ...
  • Chapin, V. G. and E. Bernard (۲۰۱۵). Active control of ...
  • Ciobaca, V. and J. Wild (۲۰۱۳). An overview of recent ...
  • Couluris, G. J., D. Signor and J. Phillips (۲۰۱۰). Cruise-efficient ...
  • Crippa, S., S. Milber-Wilkending and R. Rudnik (۲۰۱۱). DLR Contribution ...
  • Deere, K. (۲۰۰۳). Summary of fluidic thrust vectoring research at ...
  • Delfs, J. W., C. Appel, P. Bernicke, C. Blech, J. ...
  • DeSalvo, M., E. Whalen and A. Glezer (۲۰۲۰). High-lift performance ...
  • Diekmann, J. H. (۲۰۱۹). Flight mechanical challenges of STOL aircraft ...
  • Dods Jr., J. B. and E. C. Watson (۱۹۷۶). The ...
  • Durrani, N. and B. A. Haider (۲۰۱۱). Study of stall ...
  • Economon, T. D., F. Palacios, S. R. Copeland, T. W. ...
  • Ekaterinaris, J. A. (۲۰۰۴). Prediction of active flow control performance ...
  • Englar, R. J. (۱۹۷۲). Two-dimensional subsonic wind tunnel investigations of ...
  • Englar, R. J. and G. G. Huson (۱۹۸۳). Development of ...
  • Goffert, B., R. G. Silva, C. P. F. Francisco, E. ...
  • Greenblatt, D., I. J. Wygnanski and C. L. Rumsey (۲۰۱۰). ...
  • Hannon, J. A., A. E. Washburn, L. N. Jenkins and ...
  • Hartwich, P. M., P. P. Camacho, K. El-Gohary, A. B. ...
  • Haucke, F. and W. Nitsche (۲۰۱۳). Active flow control on ...
  • Hogue, J., M. Brosche, W. Oates and J. Clark (۲۰۰۹). ...
  • Holl, T., A. K. vel Job, P. Giacopinelli and F. ...
  • Hue, D., C. François, J. Dandois and A. Gebhardt (۲۰۱۷). ...
  • Johnson, P. L., K. M. Jones and M. D. Madson ...
  • Jones, G. S., C. S. Yao and B. G. Allan ...
  • Jones, G. S., J. C. Lin, B. G. Allan, W. ...
  • Jones, G. S., W. E. Milholen, D. T. Chan, S. ...
  • Kauth, F., D. G. François, Y. E. Sayed, R. Semaan, ...
  • Lawford, J. A. and D. N. Foster (۱۹۶۹). Low-Speed Wind ...
  • Lin, J. C., L. P. Melton, J. A. Hannon, M. ...
  • Lin, J. C., L. P. Melton, S. A. Viken, M. ...
  • Liu, Y., L. N. Sankar, R. J. Englar, K. K. ...
  • Liu, Z. and G. Zha (۲۰۱۶). Transonic airfoil performance enhancement ...
  • Liu, Z., Z. Luo, Q. Liu and Y. Zhou (۲۰۲۰). ...
  • Masiol, M. and R. M. Harrison (۲۰۱۴). Aircraft engine exhaust ...
  • Melton, L. P., M. Koklu, M. Andino and J. C. ...
  • Menter, F. R. (۱۹۹۴). Two-equation eddy-viscosity turbulence models for engineering ...
  • Meredith, P. T. (۱۹۹۳). Viscous phenomena affecting high-lift systems and ...
  • Oberkampf, W. L. and C. J. Roy (۲۰۱۰). Verification and ...
  • Palacios, F., T. D. Economon, A. Aranake, S. R. Copeland, ...
  • Pavlenko, O., A. Petrov and E. Pigusov (۲۰۱۸). Concept of ...
  • Petrov, A. V. (۲۰۱۲). Aerodynamics of STOL airplanes with powered ...
  • Radespiel, R., M. Burnazzi, M. Casper and P. Scholz (۲۰۱۶). ...
  • Rosenblum, J. P., P. Vrchota, A. Prachar, S. H. Peng, ...
  • Rudolph, P. K. C. (۱۹۹۶). High-Lift Systems on Commercial Subsonic ...
  • Rumsey, C. L. and J. Hannon (۲۰۱۱). Description of transformations ...
  • Rumsey, C. L., J. P. Slotnick, M. Long, R. A. ...
  • Rumsey, C. L., T. B. Gatski, S. X. Ying and ...
  • Salimi, M. R., R. Askari and M. Hasani (۲۰۲۲). Computational ...
  • Seifert, A., A. Darabi and I. Wygnanski (۱۹۹۶). Delay of ...
  • Seifert, A., T. Bachar, D. Koss, J. M. Shepshelovich and ...
  • Sellers III, W. L., G. S. Jones and M. D. ...
  • Shmilovich, A., Y. Yadlin and E. A. Whalen (۲۰۱۸). Active ...
  • Singh, D. K., A. Jain and A. R. Paul (۲۰۲۱). ...
  • Slotnick, J. P., J. A. Hannon and M. Chaffin (۲۰۱۱). ...
  • Spalart, P. and S. Allmaras (۱۹۹۲). A one-equation turbulence model ...
  • Tesar, V., C. Hung and W. Zimmerman (۲۰۰۶). No-moving-part hybrid-synthetic ...
  • Washburn, A. E., S. A. Gorton and S. G. Anders ...
  • Wild, J. (۲۰۲۰). Editorial for the CEAS aeronautical journal special ...
  • نمایش کامل مراجع