FUZZY OPTIMAL CONTROL OF MULTI-BAY CABLE-STAYED BRIDGES WITH EXCESSIVE DEGREES OF FREEDOM UNDER SEVERE UNCERTAIN SEISMIC EXCITATION

Publish Year: 1386
نوع سند: مقاله کنفرانسی
زبان: English
View: 1,790

This Paper With 10 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

SEE05_306

تاریخ نمایه سازی: 25 شهریور 1385

Abstract:

An innovative interference between full-order finite element models of excessive degrees of freedom structures such as multi-bay too long bridges and realizable balanced reduced order state-space representation of them, have been established. To deal with some unwanted defeats in analysis and design of controllers for large-scale with huge amount elements such as time-lags, time-delay, noise rejection from sensors, and unpredictable lack of stiffness of retaining cables, we use from stochastic optimal control theory combined with fuzzy inference system to design of controllers. Stochastic optimal control method able to compensate and observed immeasurable state variables whose couldn’t be sense and fuzzy inference mechanism can deal with nonlinearity of structure-controllers and uncertainty or fluctuation of seismic excitation. To do the above mentioned, we construct the comprehensive simulation which composed of the evaluation model, input/output variable user’s defined, sample controller design, digitalized compensators/controllers, and FLC(fuzzy logic controllers) to Fuzzification, decision making, inference engine, Defuzzification which attached to the simulation blocks. The bridge model has 586m length, three long bay, with two tall piers which sustain mid deck of bridge and two bent which supports two end-stayed of the bridged. The three-dimension finite element model of the bridge includes of 846 elements, 584 active degrees of freedom, and 16 connection nodes to installed actuator devices. To verification of efficiency of control procedure, two feasible approaches of optimal control process such as sliding mode control (SMC) and fuzzy sliding mode control (FSMC) have been treated to control algorithm. After intensive simulation processes, Numerical results indicate that the seismic responses of controlled bridge under three sample severe Earthquake, i.e. El-Centro, Northridge, and Kobe with uncertain magnification influence were diminished appropriately in compared with considered actuator’s constraints.

Authors

Amini

Department of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran

Vahdani

Ph.D Student

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Caughey, T. K. (2001), "Practical applications of active and semi-active ...
  • Yang, J. N., Wu, J.C., Agrawal, A. K., and Hsu, ...
  • Kim, S. B., Yun, C. B. (2000), _ Sliding mode ...
  • Tewari, A. (2002), _ _ control design with MATLAB and ...
  • نمایش کامل مراجع