A Decision Support System Framework Based on Text Mining and Decision Fusion Techniques to Classify Breast Cancer Patients
Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 274
This Paper With 20 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_COAM-6-1_002
تاریخ نمایه سازی: 30 بهمن 1401
Abstract:
Medical decision support systems (MDSS) are designed to assist physicians in making accurate decisions. The required data by MDSS are collected from various resources such as physical examinations and electronic health records (EHR). In this paper, an MDSS framework has been proposed to diagnose and classify breast cancer patients (DSS-BC). Medical texts reports (MTR) were embedded, and essential feature vectors combined with EHR were extracted using principal component analysis (PCA). A new method based on a fuzzy min-max neural network with hyper box variable expansion coefficient (FMNN-HVEC) was used to determine the molecular subtypes, and the feature vectors were clustered using deep clustering. Also, a new decision fusion algorithm called weighted Yager was proposed based on the F۱-Score for each class. This algorithm proposed a mathematical decision fusion technique to determine the Breast Imaging-Reporting and Data System (BI-RADS) and molecular subtypes values with the accuracy of ۹۵.۱۲% and ۸۹.۵۶%, respectively.
Keywords:
Authors
Mostafa Boroumandzadeh
Department of Computer Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
Elham Parvinnia
Department of computer engineering, Shiraz branch, Islamic Azad university, Shiraz, Iran.
Reza Boostani
Biomedical Group, CSE IT Department, ECE Faculty, Shiraz University, Shiraz, Iran
Sepideh Sefidbakht
Department of Radiology, Medical imaging research center, Shiraz University of Medical Sciences, Shiraz, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :