Performance Comparison of Particle Swarm Optimization and Genetic Algorithm for Back-analysis of Soil Layer Geotechnical Parameters
Publish place: Journal of Mining and Environment، Vol: 14، Issue: 1
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 179
This Paper With 16 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMAE-14-1_013
تاریخ نمایه سازی: 28 فروردین 1402
Abstract:
Surface settlement induced by tunneling is one of the most crucial problems in urban environments. Hence, accurate prediction of soil geotechnical properties is an important prerequisite in the minimization of it. In this research work, the amount of surface settlement is predicted using three-dimensional numerical simulation in the finite difference method and Artificial Neural Network (ANN). In order to determine the real geotechnical properties of soil layers around the tunnel; back-analysis is carried out using the optimization algorithm and monitoring data. Among the different optimization methods, genetic algorithm (GA) and particle swarm optimization (PSO) are selected, and their performance is compared. The results obtained show that the artificial neural network has a high ability with the amounts of R=۰.۹۹, RMSE=۰.۰۱۱۷, and MSE= ۰.۰۰۰۱۳۸ in predicting the surface settlement obtained from ۱۵۰ simulations from randomly generated data. Comparing the results of back-analysis using the optimization algorithm, the genetic algorithm shows less error than the particle swarm algorithm in different initial populations. In all cases of analysis, the calculation time for both algorithms lasts about ۵ minutes, which indicates the applicability of both algorithms in optimizing the parameters in mechanized tunneling in a short time.
Keywords:
Authors
Leila Nikakhtar
Shahrood University of Technology, Faculty of Mining, Geophysics and Petroleum Engineering, Shahrood, Iran
Shokroallah Zare
Shahrood University of Technology, Faculty of Mining, Geophysics and Petroleum Engineering, Shahrood, Iran
Hossein Mirzaei
Department of Mining Engineering, Sahand University of Technology,Tabriz, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :