A Multiport Isolated Resonant LLC Converter for Grid-Tied Renewable Energy Powered Bidirectional EV Charger
عنوان مقاله: A Multiport Isolated Resonant LLC Converter for Grid-Tied Renewable Energy Powered Bidirectional EV Charger
شناسه ملی مقاله: JR_IECO-6-1_004
منتشر شده در در سال 1402
شناسه ملی مقاله: JR_IECO-6-1_004
منتشر شده در در سال 1402
مشخصات نویسندگان مقاله:
Nasim Bagheri - Department of Electrical Engineering, Shabestar Branch, Islamic Azad University, Shabestar, Iran
Hasan Alipour - Islamic Azad University, shabestar Branch
Leila Mohammadian - Faculty of Electrical Engineering, Islamic Azad University, Shabestar Branch, Shabestar, Iran.
Jamal Beiza - Department of Electrical Engineering, Shabestar Branch, Islamic Azad University, Shabestar, Iran
Mohsen Ebadpour - Department of Electrical Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran
خلاصه مقاله:
Nasim Bagheri - Department of Electrical Engineering, Shabestar Branch, Islamic Azad University, Shabestar, Iran
Hasan Alipour - Islamic Azad University, shabestar Branch
Leila Mohammadian - Faculty of Electrical Engineering, Islamic Azad University, Shabestar Branch, Shabestar, Iran.
Jamal Beiza - Department of Electrical Engineering, Shabestar Branch, Islamic Azad University, Shabestar, Iran
Mohsen Ebadpour - Department of Electrical Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran
This paper proposes an integrated bidirectional multiport DC-DC converter for battery charging of plug-in electric vehicles, which is able to integrate the photovoltaic (PV) system, traction batteries, and the AC grid. The presented converter is more reliable than the conventional topologies because both PV panels and the grid can simultaneously or separately deliver power to the high voltage batteries. In addition, the topology is bidirectional can transfer power from batteries to the AC grid by employing half-bridge CLLC converter with fewer switches. Moreover, a unified controller along with optimum maximum power point tracking (MPPT) algorithm is utilized for control of the converter. The converter topology, control system, and operating scenarios are analyzed by using state space modeling. To evaluate the whole system performance, MATLAB/Simulink software is used to test the converter’s operation during different conditions. The simulation results depict that the proposed converter is not only able to control the batteries charge and discharge according to the state of the charge, but also maintain the DC-link voltage of the grid side to be in constant level.
کلمات کلیدی: DC-DC converter, multiport, photovoltaic (PV) system, plug-in electric vehicles (PEVs), maximum power point tracking (MPPT)
صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/1643992/