Watershed planning using MODSIM Simulation Model under Different Management Strategies, A Case Study: Maharlou-Bakhtegan Watershed
Publish place: 9th International Congress on Civil Engineering
Publish Year: 1391
نوع سند: مقاله کنفرانسی
زبان: English
View: 1,545
This Paper With 8 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICCE09_857
تاریخ نمایه سازی: 7 مهر 1391
Abstract:
With a rapid population growth and consequent increasing in water demands in the last few decades, the management of water resources considering environmental protection issues in a watershed scale is under increasing pressure all over the world. Determination of optimal water resources management strategies is relatively complicated because many parameters and disciplines are dealing with extracting optimal water resources management strategies. In this paper, a scenario-based analysis approach was examined for water resources management and planning of Maharlou-Bakhtegan watershed using MODSIM model as a generic river basin management decision support system (DSS). This approach is used to assess the effects of water and land resources development strategies, climate change, groundwater withdrawal levels and irrigation efficiency on municipal, industrial and agricultural water supply as well as environmental water demand satisfaction. For Evaluation of system performance, performance indices including reliability, resiliency and vulnerability are calculated to evaluate the results of the proposed approach. Results showed that MODSIM model has profound capabilities as a DSS tool in facilitating and evaluating the water resources management strategies in watershed scale
Keywords:
Authors
Saeed Rasi Nezami
Candidate for PhD Degree in Civil and Environmental Engineering, University of Tehran, Iran
Ali Moridi
Assistant Professor, Department of Civil Engineering, Tarbiat Moallem University, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :