Selection and multi-objective optimisation of stock portfolio using a combination of machine learning methods and meta-heuristic algorithms
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 226
This Paper With 20 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJFMA-9-34_004
تاریخ نمایه سازی: 4 تیر 1402
Abstract:
The main goal the model and optimal investment portfolio selection to maximize stock portfolio returns based on the forecasted price and minimize investment portfolio risk based on the Markowitz model. This paper presents is to select the optimal stock portfolio based on data training through Markov decision-making and ensemble learning. To teach data from the data of five years (۲۰۱۶-۲۰۱۱), ۸۵ active stock exchange companies in Iran that have been filtered based on technical, fundamental, and time series variables have been used. Therefore, the stock sets are first filtered based on optimizing trading rules based on technical analysis, Markov decision-making and ensemble learning that issued the buy signal. Data for the next ۵ years (۲۰۲۰-۲۰۱۶) were also used to test NSGA II and MOPSO algorithms. According to the obtained results, if the shares are bought equally among ۸۵ companies and maintained for five years, the average return on the total stock portfolio is equal to ۱۳.۰۸%, with a risk of ۰.۹۴۶%. While using the MOPSO algorithm has achieved an average of ۴۳.۵۴% with an average risk of ۱.۱۰۲% . The rate of return on capital for the NSGA II algorithm was also the highest in ۵ years. Therefore, it can be said that based on the obtained indicators, NSGA II algorithm is the best combination of the stock portfolio.
Authors
Nasrin Bagheri Mazraeh
Phd Student, Department of financial management, science and research branch, Islamic Azad university, tehran, iran
amir daneshvar
Assistant Professor, Department of Information Technology Management, Electronic branch, Islamic Azad university, tehran, iran
Mahdi Madanchi Zaj
Assistant Professor, Department of Financial Management, Electronic branch, Islamic Azad University, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :