A new approach to generalize metric functions
عنوان مقاله: A new approach to generalize metric functions
شناسه ملی مقاله: JR_IJNAA-14-3_024
منتشر شده در در سال 1402
شناسه ملی مقاله: JR_IJNAA-14-3_024
منتشر شده در در سال 1402
مشخصات نویسندگان مقاله:
Abhishikta Das - Department of Mathematics, Siksha-Bhavana, Visva-Bharati, Santiniketan-۷۳۱۲۳۵, Birbhum, West Bengal, India
Anirban Kundu - Department of Mathematics, Siksha-Bhavana, Visva-Bharati, Santiniketan-۷۳۱۲۳۵, Birbhum, West Bengal, India
Tarapada Bag - Department of Mathematics, Siksha-Bhavana, Visva-Bharati, Santiniketan-۷۳۱۲۳۵, Birbhum, West Bengal, India
خلاصه مقاله:
Abhishikta Das - Department of Mathematics, Siksha-Bhavana, Visva-Bharati, Santiniketan-۷۳۱۲۳۵, Birbhum, West Bengal, India
Anirban Kundu - Department of Mathematics, Siksha-Bhavana, Visva-Bharati, Santiniketan-۷۳۱۲۳۵, Birbhum, West Bengal, India
Tarapada Bag - Department of Mathematics, Siksha-Bhavana, Visva-Bharati, Santiniketan-۷۳۱۲۳۵, Birbhum, West Bengal, India
This article consists of a new concept of generalized metric space, called \phi-metric space which is developed by making a suitable modification in the `triangle inequality. The notion of \phi-metric generalizes the concept of some existing metrizable generalized spaces like S-metric, b-metric, etc. It is shown that one can easily construct a \phi-metric from those generalized metric functions and the notion of convergence of a sequence on those generalized metric spaces are identical with the respective induced \phi-metric spaces. Moreover, \phi-metric space is metrizable and its properties are pretty similar to the metric functions. So \phi-metric functions substantially may play the role of metric functions. Also, the structure of \phi-metric space is studied and some well-known fixed point theorems are established.
کلمات کلیدی: φ-metric, φ-metric spaces, generalized distance function, metrizability
صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/1727069/