A new fractional derivative operator and applications
عنوان مقاله: A new fractional derivative operator and applications
شناسه ملی مقاله: JR_IJNAA-14-1_098
منتشر شده در در سال 1402
شناسه ملی مقاله: JR_IJNAA-14-1_098
منتشر شده در در سال 1402
مشخصات نویسندگان مقاله:
Mouhssine Zakaria - Department of Mathematics, Faculty of Science Tetouan, Abdelmalek Essaad University, Tetouan, Morocco
Abdelaziz Moujahid - Department of Mathematics, Faculty of Science Tetouan, Abdelmalek Essaad University, Tetouan, Morocco
Mahjoub Ikhouba - Department of Mathematics, Faculty of Science Tetouan, Abdelmalek Essaad University, Tetouan, Morocco
خلاصه مقاله:
Mouhssine Zakaria - Department of Mathematics, Faculty of Science Tetouan, Abdelmalek Essaad University, Tetouan, Morocco
Abdelaziz Moujahid - Department of Mathematics, Faculty of Science Tetouan, Abdelmalek Essaad University, Tetouan, Morocco
Mahjoub Ikhouba - Department of Mathematics, Faculty of Science Tetouan, Abdelmalek Essaad University, Tetouan, Morocco
We introduce a new fractional derivative which obeys classical properties including linearity, product rule, power rule, vanishing derivatives for constant functions, chain rule, quotient rule, Rolle's Theorem and the Mean Value Theorem:D^\alpha(f)(t)=\lim _{\epsilon \rightarrow ۰} \frac{f\left(t e^{\frac{۱}{\Gamma(۱-\alpha)}} e^{-\alpha}\right)-f(t)}{\epsilon},this definition is comfortable with the classical definition of the Caputo Fractional Operator.
کلمات کلیدی: New Fractional Derivative, Fractional differential equations, Caputo differential operators
صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/1740036/