Revenue Sharing Contracts in Coalition Loyalty Reward Supply Chain Planning: A Stochastic Programming Approach
Publish place: International Journal of Industrial Engineering & Production Research، Vol: 34، Issue: 3
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 278
This Paper With 18 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJIEPR-34-3_006
تاریخ نمایه سازی: 1 مهر 1402
Abstract:
A coalition loyalty program (CLP) is a business strategy adopted by companies to increase and retain their customers. An operational challenge in this regard is to determine the coordination mechanism with business partners. This study investigated the role of revenue-sharing contracts (RSCs) considering customer satisfaction in coalition loyalty reward supply chain planning. A two-stage stochastic programming approach was considered for the solution considering the demand uncertainty. We aimed to investigate the impact of RSCs on the decision-making and profitability of the host firm of this supply chain taking into account the maximization of the profit coming from the CLP compared to the more common wholesale price contract (WPC). After the model was solved, computational experiments were performed to evaluate and compare the effects of RSCs and WPCs on the performance of the loyalty program (LP). The results revealed that RSC is an effective incentive to increase the host’s profit and reduce its cost. These findings add new insights to the management literature, which can be used by business decision makers.
Keywords:
Authors
Shahla Zandi
Department of Industrial Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran
Reza Samizadeh
Associate Professor , Alzahra University- Faculty of Engineering, Al-Zahra University, Deh Vanak St., Tehran
Maryam Esmaeili
Associate Professor , Alzahra University- Faculty of Engineering, Al-Zahra University, Deh Vanak St., Tehran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :