Predicting Medication Adherence Based on Personality Characteristics in Individuals with Type ۲ Diabetes Mellitus
Publish place: Iranian Journal of Diabetes and Obesity، Vol: 12، Issue: 3
Publish Year: 1399
نوع سند: مقاله ژورنالی
زبان: English
View: 91
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJDO-12-3_001
تاریخ نمایه سازی: 16 آبان 1402
Abstract:
Objective: Diabetes mellitus is a chronic illness and adherence to medications is vital to manage the illness. The purpose of this study was to examine the prediction of medication adherence based on personality factors in a group of individuals with type ۲ diabetes in Yasuj.
Materials and Methods: One hundred twenty individuals with type ۲ diabetes who visited health centers were selected for this study through convenience sampling. The participants completed the NEO-Five Factor Inventory and Medication Adherence Rating Scale (MARS). The data were analyzed by mean, standard deviation, and multiple regression analysis using SPSS software.
Results: The results showed that among the big-five personality factors, only neuroticisms significantly predicted adherence to medications (β= -۰.۳۱, P-value< ۰.۰۰۳). Furthermore, the model explained only ۱۹% of the variance in medication adherence (R۲= ۰.۱۹, P-value< ۰.۰۱).
Conclusion: This study indicated that a large proportion of patients with type ۲ diabetes did not adhere to their medications. This study highlighted that the personality trait of neuroticism was important in predicting medication adherence in patients with type ۲ diabetes.
Keywords:
Authors
Abdulaziz Aflakseir
Associate Professor, Department of Psychology, School of Education and Psychology, University of Shiraz, Shiraz, Iran
Farzad Nikroo
MA Student, Department of Psychology, School of Education and Psychology, University of Shiraz, Shiraz, Iran
Javad Mollazade
Associate Professor, Department of Psychology, School of Education and Psychology, University of Shiraz, Shiraz, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :