Portfolio Optimization with Conditional Drawdown at Risk for the Automotive Industry

Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 136

This Paper With 7 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJAEIU-13-4_004

تاریخ نمایه سازی: 4 دی 1402

Abstract:

Portfolio optimization is the process of distributing a specific amount of wealth across various available assets, with the aim of achieving the highest possible returns while minimizing investment risks. There are a large number of studies on portfolio optimization in various cases, covering numerous applications; however, none have focused exclusively on the automotive industry as one of the largest manufacturing sectors in the global economy. Since the economic activity of this industry has a coherent pattern with that of the global economy, the automotive industry is very sensitive to the booms and busts of business cycles. Due to the volatile global economic environment and significant inter-industry implications, providing an appropriate approach to investing in this sector is essential. Thus, this paper aims to provide an appropriate approach to investing in this sector. In this study, an extended Conditional Drawdown at Risk (CDaR) model with cardinality and threshold constraints for portfolio optimization problems is proposed, which is highly beneficial in practical portfolio management. The feature of this risk management technique is that it admits the formulation of a portfolio optimization model as a linear programming problem. The CDaR risk functions family also enables a risk manager to control the worst ( ۱-α)×۱۰۰%  drawdowns. In order to demonstrate the effectiveness of the proposed model, a real-world empirical case study from the annual financial statements of automotive companies and their suppliers in the Tehran Stock Exchange (TSE) database is utilized.

Authors

Hossein Ghanbari

PhD Candidate in Industrial Engineering, Faculty of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran

Mostafa Shabani

MSc Student in Industrial Engineering, Faculty of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran

Emran Mohammadi

Associate Professor, Faculty of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • A. M. L. Fooeik, H. Ghanbari, M. Bagheriyan, and E. ...
  • H. Ghanbari, A. M. L. Fooeik, A. Eskorouchi, and E. ...
  • J. Narkunienė and A. Ulbinaitė, “Comparative analysis of company performance ...
  • A. Ahmed, R. Ali, A. Ejaz, and M. I. Ahmad, ...
  • F. García, F. Guijarro, J. Oliver, and R. Tamošiūnienė, “Hybrid ...
  • H. Markowitz, “PORTFOLIO SELECTION*,” J Finance, vol. ۷, no. ۱, ...
  • H. Ghanbari, M. Safari, R. Ghousi, E. Mohammadi, and N. ...
  • M. Manteghi, B. Abdi, and A. A. Tofigh, “Technological Vision ...
  • A. Chekhlov, S. Uryasev, and M. Zabarankin, “Portfolio optimization with ...
  • R. T. Rockafellar and S. Uryasev, “Optimization of conditional value-at-risk,” ...
  • R. T. Rockafellar and S. Uryasev, “Conditional value-at-risk for general ...
  • P. Krokhmal, S. Uryasev, and G. Zrazhevsky, “Numerical Comparison of ...
  • Y. Jin, R. Qu, and J. Atkin, “Constrained portfolio optimisation: ...
  • نمایش کامل مراجع