Improving Behavior in Fuzzy Markov Chains Using a Random Algorithm
عنوان مقاله: Improving Behavior in Fuzzy Markov Chains Using a Random Algorithm
شناسه ملی مقاله: ICNMO01_059
منتشر شده در کنفرانس بین المللی مدل سازی غیر خطی و بهینه سازی در سال 1391
شناسه ملی مقاله: ICNMO01_059
منتشر شده در کنفرانس بین المللی مدل سازی غیر خطی و بهینه سازی در سال 1391
مشخصات نویسندگان مقاله:
Behrouz Fathi Vajargah - Department of Statistics, University of Guilan, Rasht, Iran
Maryam Gharehdaghi - Department of Statistics, University of Guilan, Rasht, Iran
خلاصه مقاله:
Behrouz Fathi Vajargah - Department of Statistics, University of Guilan, Rasht, Iran
Maryam Gharehdaghi - Department of Statistics, University of Guilan, Rasht, Iran
We first introduce fuzzy finite Markov chains and present some of their fundamental properties based on possibility theory. We also bring in a way to convert fuzzy Markovchains to classic Markov chains. In addition, we simulate fuzzy Markov chain using different sizes. It is observed that the most of fuzzy Markov chains not only do have an ergodic behavior, but also they are periodic. Finally, using Halton quasi-random sequence we generate some fuzzy Markov chains which compared to the ones generated by the RAND function of MATLAB. Therefore, we improve the periodicity behavior of fuzzy Markov chains
کلمات کلیدی: Fuzzy Markov Chains, Stationary Distribution, Ergodicity, Simulation, Halton Quasi-Random Sequence
صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/187653/