CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

Improving Behavior in Fuzzy Markov Chains Using a Random Algorithm

عنوان مقاله: Improving Behavior in Fuzzy Markov Chains Using a Random Algorithm
شناسه ملی مقاله: ICNMO01_059
منتشر شده در کنفرانس بین المللی مدل سازی غیر خطی و بهینه سازی در سال 1391
مشخصات نویسندگان مقاله:

Behrouz Fathi Vajargah - Department of Statistics, University of Guilan, Rasht, Iran
Maryam Gharehdaghi - Department of Statistics, University of Guilan, Rasht, Iran

خلاصه مقاله:
We first introduce fuzzy finite Markov chains and present some of their fundamental properties based on possibility theory. We also bring in a way to convert fuzzy Markovchains to classic Markov chains. In addition, we simulate fuzzy Markov chain using different sizes. It is observed that the most of fuzzy Markov chains not only do have an ergodic behavior, but also they are periodic. Finally, using Halton quasi-random sequence we generate some fuzzy Markov chains which compared to the ones generated by the RAND function of MATLAB. Therefore, we improve the periodicity behavior of fuzzy Markov chains

کلمات کلیدی:
Fuzzy Markov Chains, Stationary Distribution, Ergodicity, Simulation, Halton Quasi-Random Sequence

صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/187653/