F-MIM: Feature-based Masking Iterative Method to Generate the Adversarial Images against the Face Recognition Systems

Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 82

This Paper With 14 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JITM-15-0_005

تاریخ نمایه سازی: 17 دی 1402

Abstract:

Numerous face recognition systems employ deep learning techniques to identify individuals in public areas such as shopping malls, airports, and other high-security zones. However, adversarial attacks are susceptible to deep learning-based systems. The adversarial attacks are intentionally generated by the attacker to mislead the systems. These attacks are imperceptible to the human eye. In this paper, we proposed a feature-based masking iterative method (F-MIM) to generate the adversarial images. In this method, we utilize the features of the face to misclassify the models. The proposed approach is based on a black-box attack technique where the attacker does not have the information related to target models. In this black box attack strategy, the face landmark points are modified using the binary masking technique. In the proposed method, we have used the momentum iterative method to increase the transferability of existing attacks. The proposed method is generated using the ArcFace face recognition model that is trained on the Labeled Face in the Wild (LFW) dataset and evaluated the performance of different face recognition models namely ArcFace, MobileFace, MobileNet, CosFace and SphereFace under the dodging and impersonate attack. The F-MIM attack is outperformed in comparison to the existing attacks based on Attack Success Rate evaluation metrics and further improves the transferability.

Authors

Agrawal

Department of Computer Engineering & Applications, GLA University, Mathura, ۲۸۱۴۰۶, (U.P.) India.

Bhatnagar

Department of Computer Engineering & Applications, GLA University, Mathura, ۲۸۱۴۰۶, (U.P.) India.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Agrawal, K., & Bhatnagar, C. (۲۰۲۳). M-SAN: a patch-based transferable ...
  • Agrawal, K., & Bhatnagar, C. (۲۰۲۳, May). A Black-box based ...
  • Agrawal, K., Bhatnagar, C., ۲۰۲۱. Bmim: Generating adversarial attack on ...
  • Biggio, B., Corona, I., Maiorca, D., Nelson, B., Srndi ˇ ...
  • Bressan, G. M., de Azevedo, B. C. F., & de ...
  • Chen, S., Liu, Y., GAO, X., & Han, Z. (۲۰۱۸, ...
  • Deb, D., Zhang, J., Jain, A.K., ۲۰۲۰. Advfaces: Adversarial face ...
  • Deng, J., Guo, J., Xue, N., Zafeiriou, S., ۲۰۱۹. Arcface: ...
  • Devi, U. R., & Uma, K. (۲۰۱۹). A Study on ...
  • Geman, O., Chiuchisan, I., & Toderean, R. (۲۰۱۷). Application of ...
  • Qiu, D. Gong, Z. Li, et al., “End۲end occluded face ...
  • Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, ...
  • Howsalya Devi, R. D., Bai, A., & Nagarajan, N. (۲۰۲۰). ...
  • J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing ...
  • Khalil, R. M., & Al-Jumaily, A. (۲۰۱۷). Machine learning based ...
  • Kumar, A., Singh, K., & Khan, T. (۲۰۲۱). L-RTAM: Logarithm ...
  • Kumar, A., Singh, K., Khan, T., Ahmadian, A., Saad, M. ...
  • Kurakin, A., Goodfellow, I., Bengio, S., et al., ۲۰۱۶. Adversarial ...
  • Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., ...
  • Lukmanto, R. B., Suharjito, Nugroho, A., & Akbar, H. (۲۰۱۹). ...
  • Massoli, F.V., Falchi, F., Amato, G., ۲۰۲۰. Cross-resolution face recognitionadversarial ...
  • Niswati, Z., Mustika, F. A., & Paramita, A. (۲۰۱۸). Fuzzy ...
  • Sarwar, M. A., Kamal, N., Hamid, W., & Shah, M. ...
  • Sharif, M., Bauer, L., Reiter, M.K., ۲۰۱۸. On the suitability ...
  • Sharif, M., Bhagavatula, S., Bauer, L., Reiter, M.K., ۲۰۱۶. Accessorize ...
  • Swain, A., Mohanty, S., & Das, A. (۲۰۱۳). COMPARATIVE RISK ...
  • Thakkar, H., Shah, V., Yagnik, H., & Shah, M. (۲۰۲۱). ...
  • Undre, P., Kaur, H., & Patil, P. (۲۰۱۵). Improvement in ...
  • Vijiyakumar, K., Lavanya, B., Nirmala, I., & Sofia Caroline, S. ...
  • Wei, Y. Guo, and J. Yu, “Adversarial sticker: A stealthy ...
  • Dong, H. Su, B. Wu, et al., “Efficient decision-based black-box ...
  • Dong, Q.-A. Fu, X. Yang, et al., “Benchmarking adversarial robustness ...
  • Li, X. Yang, B. Wu, et al., “Hiding faces in ...
  • Yang, L., Song, Q., Wu, Y., ۲۰۲۱. Attacks on state-of-the-art ...
  • Zhang, K., Zhang, Z., Li, Z., Qiao, Y., ۲۰۱۶. Joint ...
  • Zhong, Y., Deng, W., ۲۰۲۰a. Towards transferable adversarial attack against ...
  • Zhou, Z., Tang, D., Wang, X., Han, W., Liu, X., ...
  • نمایش کامل مراجع