Predicting Gabal Gattar Uranium Content as a Function of Total Gamma-ray and Thorium Contents using an Artificial Neural Network in Northeastern Desert, Egypt
Publish place: Journal of Mining and Environment، Vol: 15، Issue: 1
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 98
This Paper With 15 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMAE-15-1_009
تاریخ نمایه سازی: 20 دی 1402
Abstract:
This study aims to develop an empirical correlation model for estimating the uranium content of the G-V in the Gabal Gattar area, northeastern desert of Egypt, as a function of the thorium content and the total gamma rays. Using the recent MATLAB software, the effect of selecting tan-sigmoid as a transfer function at various numbers of hidden neurons was investigated to arrive at the optimum Artificial Neural Network (ANN) model. The pure-linear function was investigated as the output function, and the Levenberg-Marquardt approach was chosen as the optimization technique. Based on ۱۲۲۱ datasets, a novel ANN-based empirical correlation was developed to calculate the amounts of uranium (U). The results show a wide range of uranium content, with a determination coefficient (R۲) of about ۰.۹۹۹, a Root Mean Square Error (RMSE) equal to ۰.۱۱۵%, a Mean Relative Error (MRE) of -۰.۰۵%, and a Mean Absolute Relative Error (MARE) of ۰.۷۶%. Comparing the obtained results with the field investigation shows that the suggested ANN model performed well.
Keywords:
Authors
Abdelrahem Embaby
Mining and Petroleum Engineering Department, Faculty of Engineering, Al-Azhar University, Cairo, Egypt.
Sayed Gomaa
Mining and Petroleum Engineering Department, Faculty of Engineering, Al-Azhar University, Cairo, Egypt.
Yehia Darwish
Mining and Petroleum Engineering Department, Faculty of Engineering, Al-Azhar University, Cairo, Egypt.
Samir Selim
Mining and Petroleum Engineering Department, Faculty of Engineering, Al-Azhar University, Cairo, Egypt.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :