The Effect of Soil Physical and Chemical Properties on the Performance Indices of Artichoke’s Leaf using Artificial Neural Network (ANN)

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 64

This Paper With 13 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JJMPB-13-1_014

تاریخ نمایه سازی: 8 بهمن 1402

Abstract:

The present study aims to estimate the performance of artichoke via physic-chemical parameters of soil including soil texture, pH, and bulk density using the artificial neural network (ANN) method. Thus, the soils of sixty points across croplands and forests of Golestan province, Iran were sampled, and soil parameters were measured in the lab. Based on the obtained parameters the different models were performed. The experiment was conducted as a randomized complete block design with three replications. The results showed that ANN models were more efficient than the multivariate regression models (MR model). All ANN models were better to estimate plant weight performance compared with the MR model. Plants grown in the soil samples of the “Ahangar Mahalleh area” showed the highest level of yield performance. Based on the findings, model number ۵ with a minimum input parameter was selected as an optimal model. All ANN models were better than the multivariate regression models in the estimation of plant weight. As model ۵ had almost similar performance with a minimal number of inputs compared with the other models, this model can be selected as the best model.

Keywords:

Cynara scolymus , Easily Accessible Soil Parameters , performance

Authors

Azadeh Alizadeh

Department of Horticultural, Gorgan University of Agriculture and Natural Resources, Gorgan, Iran

Azim Ghasemnezhad

Department of Horticultural, Gorgan University of Agriculture and Natural Resources, Gorgan, Iran

Aboutaleb Hezarjaribi

Department of Horticultural, Gorgan University of Agriculture and Natural Resources, Gorgan, Iran

Mohammad Zaman Aladdin

Department of soil Sciences, Gorgan University of Agricultural Sciences and Natural Resources

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Ebrahimi‐Mameghani M., Asghari‐Jafarabadi M., Rezazadeh K. TCF۷L۲-rs۷۹۰۳۱۴۶ polymorphism modulates the ...
  • Sabater C., Sabater V., Olano A., Montilla A., Corzo N. ...
  • Bergmeir C., Benitez J.M. Neural networks in R using the ...
  • Sabater C., Molina-Tijeras J.A., Vezza T., Corzo N., Montilla A., ...
  • Drummond S.T., Sudduth K.A., Joshi A., Birrell SL, Kitchen NR. ...
  • Cravener T.L., Roush W.B. Prediction of amino acid profiles in ...
  • Sabourifard H., Ghasemnezhad A., Hemmati K., Hezarjeribi A., Bahrami M., ...
  • Page A., Miller R., Keeney D. Methods of soil analysis.۲th ...
  • Movahedi Naeini S.A., Rezaei M. Soil physics (fundamentals and applications). ...
  • Sajikumara N., Thandaveswra B. A non-linear rainfall- runoff model using ...
  • Hill M. Methods and guidelines for effective model calibration. U.S. ...
  • Sabourifard H., Ghasemnezhad A., Hemmati K., Hezarjeribi A., Bahrami M., ...
  • Schaap M., Leij F., van Genuchten M. Neural network analysis ...
  • Schaap M., Leij F. Using neural networks to predict soil ...
  • Moazenzadeh R., Ghahraman B., Fathalian F., Khoshnoodiyazdi A. Effect of ...
  • نمایش کامل مراجع