Traffic Scene Analysis and Classification using Deep Learning

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 29

This Paper With 7 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:


تاریخ نمایه سازی: 21 بهمن 1402


In this study, we aim to use new deep-learning tools and convolutional neural networks for traffic analysis. ResNeXt architecture, one of the most potent architectures and has attracted much attention in various fields, has been proposed to examine the scene, and classify it into three categories: cars, bikes (bicycles/motorcycles), and pedestrians. Previous studies have focused more on one type of classification and reported only human-facial recognition or vehicle detection. In contrast, the proposed method uses precise architecture to perform the classification of three classes. The proposed plan has been implemented in several steps: the first stage is to divide the critical objects. In the next step, the characteristics of the obtained objects are extracted to classify the process into three classes. Experiments have been conducted on different and essential datasets such as high-traffic, low-quality, real-time scenes. Essential evaluation criteria such as accuracy, sensitivity, and specificity show that the performance of the proposed method has improved compared to the methods being compared. The accuracy criterion reached more than ۹۲%, sensitivity about ۸۹%, and specially to ۹۰.۲۵%. The proposed method can be used to implement intelligent cities, public safety, and metropolitan decisions and use the results in urban management, predictive modeling of lost data management, sequential data management, and generalizability.


Z. Dorrani

Department of Electrical Engineering, Payame Noor University (PNU), Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Al-Mallahi A, Natarajan M, Shirzadifar A. Development of robust communication ...
  • Ranjith CP, Hardas BM, Mohideen MSK, Raj NN, Robert NR, ...
  • نمایش کامل مراجع