Mitigation from SQL Injection Attacks on Web Server using Open Web Application Security Project Framework
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 175
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-37-4_006
تاریخ نمایه سازی: 21 بهمن 1402
Abstract:
SQL injection (SQLi) is one of the most common attacks against database servers and has the potential to threaten server services by utilizing SQL commands to change, delete, or falsify data. In this study, researchers tested SQLi attacks against websites using a number of tools, including Whois, SSL Scan, Nmap, Open Web Application Security Project (OWASP) Zap, and SQL Map. Then, researchers identified SQLi vulnerabilities on the tested web server. Next, researchers developed and implemented mitigation measures to protect the website from SQLi attacks. Test results using OWASP Zap identified ۱۴ vulnerabilities, with five of them at a medium level of ۳۵%, seven at a low level of ۵۰%, and two at an informational level of ۱۴%. Meanwhile, testing using SQL Map succeeded in gaining access to the database and username on the web server. The next step in this research is to provide recommendations for installing a firewall on the website as a mitigation measure to reduce the risk of SQLi attacks. The main contribution of this research is the development of a structured methodology to identify and address SQLi vulnerabilities in web servers, which play an important role in maintaining data security and integrity in a rapidly evolving online environment.
Keywords:
Authors
A. Fadlil
Department of Electrical Engineering, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
I. Riadi
Department of Information System, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
M. A. Mu’min
Department of Information System, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :