CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

A revolution in subsea energy transmission: harnessing the power of artificial intelligence for optimal pipeline design and execution

عنوان مقاله: A revolution in subsea energy transmission: harnessing the power of artificial intelligence for optimal pipeline design and execution
شناسه ملی مقاله: AUPCONF02_036
منتشر شده در دومین کنفرانس بین المللی دستاوردهای خلاقانه معماری، شهرسازی، عمران و محیط زیست در توسعه پایدار خاورمیانه در سال 1402
مشخصات نویسندگان مقاله:

سید رضا سمائی - Post-doctoral, Lecturer of Technical and Engineering Faculty, Science and Research Branch, Islamic Azad University, Tehran, Iran.
محمد اسدیان قهفرخی - Assistant professor, Department of Marine industries, Science and Research Branch, Islamic Azad University, Tehran, Iran.

خلاصه مقاله:
This article delves into the transformative impact of artificial intelligence (AI) on subsea energy transmission, focusing on the design and implementation of pipelines beneath the ocean floor. The integration of AI algorithms throughout the project lifecycle, from initial data analysis to continuous improvement, is explored. We examine how machine learning, reinforcement learning, computer vision, and other AI techniques contribute to optimizing pipeline routes, enhancing structural integrity, and facilitating proactive maintenance. The article highlights the potential of AI-driven robotics in automating inspections and repairs, minimizing human intervention in challenging underwater environments. By leveraging predictive analytics and real-time monitoring, these advancements promise increased efficiency, safety, and sustainability in subsea energy infrastructure. The article concludes with insights into the evolving landscape of AI applications, offering a glimpse into the future of subsea energy transmission.

کلمات کلیدی:
Subsea Energy Transmission, Artificial Intelligence, Pipeline Design, Underwater Robotics, Machine Learning, Reinforcement Learning.

صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/1912232/