Anti-bacterial Activity of Bio-Synthesis of Cerium Oxide Nanoparticles with Gallic acid
بيست و چهارمين كنگگره بين المللى ميكروب شناسى ايران (سال: 1402)

Morteza Karimian - Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran

Somayeh Reiisi - Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran

خلاصه مقاله:
BACKGROUND AND OBJECTIVESCerium oxide nanoparticles, also known as nanoceria, are particles of cerium oxide that are less than l•• nanometers in size. They have unique physical and chemical properties that make them attractive for a wide range of applications, including catalysis, energy storage, biomedical function, and drug delivery. The antibacterial properties of cerium oxide nanoparticles are believed to be due to their ability to generate reactive oxygen species (ROS). The objective of this study is to investigate and characterize the antibacterial effect of cerium oxide nanoparticles (CeOrNP) synthesized using Gallic acid.MATERIALS AND METHODSThe biosynthesis of CeOrNP was performed using Gallic acid by sol-gel method; This method involves the reaction of a cerium nitrate with a stabilizing agent (Gallic acid), then pH of the solution adjusted to basic to $)^{*}$, and heated in $\uparrow \cdot \stackrel{\circ}{\mathrm{C}}$ for Yh to form cerium oxide nanoparticles. The synthesized nanoceria was evaluated by SEM, XDR, DLS, ZETA and FTIR tests. Antimicrobial properties of CeOrNP against Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Klebsiella bacteria were measured by MIC.RESULTS AND DISCUSSIONThe results of current study shown that average size of CeOrNPs was $1 \cdots-\Gamma \cdots n$ and XRD analysis displayed the cubic fluorite structure of the synthesized nanoparticles. FT-IR reveals stretching frequencies at $\Delta \Delta \cdot \mathrm{cm}-1$ which confirmed the $\mathrm{Ce}-\mathrm{O}$ stretching bands and showing application of natural components for the production of nanoparticles. The SEM images reveal that the prepared CeOrNP are composed of spherical nanoparticles in aggregated form. Minimum bactericidal concentrations for Gram positive and _negative of $1 \cdots-r \omega \cdot \mu \mathrm{~g} / \mathrm{mL}$ were generated. However, S. aureus and E. coli exhibited the higher sensitivity, while other were the slightest sensitive to CeOrNPs.CONCLUSIONThese results indicate that CeOrNPs synthesized using Gallic acid are hopeful another treatment for some bacterial infection. Also, this study will give the possible for the sustained progress of biocompatible .nanoparticles with improved biological abilities derived from natural products

كلمات كليدى:
Cerium oxide nanoparticle, Green synthesized, Anti-bacterial, Gallic acid
لينكى ثابت مقاله در پايگاه سيويليكا:

