Constrained K-means and Genetic Algorithm-based Approaches for Optimal Placement of Wireless Structural Health Monitoring Sensors

Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 55

This Paper With 18 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_CEJ-8-12_001

تاریخ نمایه سازی: 2 اردیبهشت 1403

Abstract:

Optimal placement of wireless structural health monitoring (SHM) sensors has to consider modal identification accuracy and power efficiency. In this study, two-tier wireless sensor network (WSN)-based SHM systems with clusters of sensors are investigated to overcome this difficulty. Each cluster contains a number of sensor nodes and a cluster head (CH). The lower tier is composed of sensors communicating with their associated CHs, and the upper tier is composed of the network of CHs. The first step is the optimal placement of sensors in the lower tier via the effective independence method by considering the modal identification accuracy. The second step is the optimal placement of CHs in the upper tier by considering power efficiency. The sensors in the lower tier are partitioned into clusters before determining the optimal locations of CHs in the upper tier. Two approaches, a constrained K-means clustering approach and a genetic algorithm (GA)-based clustering approach, are proposed in this study to cluster sensors in the lower tier by considering two constraints: (۱) the maximum data transmission distance of each sensor; (۲) the maximum number of sensors in each cluster. Given that each CH can only manage a limited number of sensors, these constraints should be considered in practice to avoid overload of CHs. The CHs in the upper tier are located at the centers of the clusters determined after clustering sensors in the lower tier. The two proposed approaches aim to construct a balanced size of clusters by minimizing the number of clusters (or CHs) and the total sum of the squared distance between each sensor and its associated CH under the two constraints. Accordingly, the energy consumption in each cluster is decreased and balanced, and the network lifetime is extended. A numerical example is studied to demonstrate the feasibility of using the two proposed clustering approaches for sensor clustering in WSN-based SHM systems. In this example, the performances of the two proposed clustering approaches and the K-means clustering method are also compared. The two proposed clustering approaches outperform the K-means clustering method in terms of constructing balanced size of clusters for a small number of clusters. Doi: ۱۰.۲۸۹۹۱/CEJ-۲۰۲۲-۰۸-۱۲-۰۱ Full Text: PDF

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Cha, Y. J., Agrawal, A. K., Kim, Y., & Raich, ...
  • Kammer, D. C. (1990). Sensor Placement for On-Orbit Modal Identification ...
  • Spencer, B. F., Ruiz-Sandoval, M. E., & Kurata, N. (2004). ...
  • Lynch, J. P. (2006). A Summary Review of Wireless Sensors ...
  • Lin, T. H., Lu, Y. C., & Hung, S. L. ...
  • Kottapalli, V. A., Kiremidjian, A. S., Lynch, J. P., Carryer, ...
  • Zhou, G.-D., Yi, T.-H., Xie, M.-X., Li, H.-N., & Xu, ...
  • Abdulkarem, M., Samsudin, K., Rokhani, F. Z., & A Rasid, ...
  • Hung, S. L., Ding, J. T., & Lu, Y. C. ...
  • Hussain, S., Matin, A. W., & Islam, O. (2007). Genetic ...
  • Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient ...
  • Sasikumar, P., & Khara, S. (2012). K-Means Clustering in Wireless ...
  • Ray, A., & De, D. (2016). Energy efficient clustering protocol ...
  • Periyasamy, S., Khara, S., & Thangavelu, S. (2016). Balanced Cluster ...
  • Holland, J. H. (2019). Adaptation in Natural and Artificial Systems. ...
  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and ...
  • Adeli, H., & Hung, S. L. (1994). Machine learning: neural ...
  • Jin, S., Zhou, M., & Wu, A. S. (2003). Sensor ...
  • Ferentinos, K. P., & Tsiligiridis, T. A. (2007). Adaptive design ...
  • Peiravi, A., Mashhadi, H. R., & Hamed Javadi, S. (2013). ...
  • Nayak, P., & Vathasavai, B. (2017). Genetic algorithm based clustering ...
  • Pal, R., Yadav, S., Karnwal, R., & Aarti. (2020). EEWC: ...
  • Bhola, J., Soni, S., & Cheema, G. K. (2020). Genetic ...
  • Khoshraftar, K., & Heidari, B. (2020). A Hybrid Method Based ...
  • Hassan, A. A. hussian, Shah, W. M., Othman, M. F. ...
  • Middleton, D. (2009). An Introduction to Statistical Communication Theory. McGraw-Hill, ...
  • Jain, A.K., & Dubes, R.C. (1988). Algorithms for Clustering Data. ...
  • Forero, P. A., Cano, A., & Giannakis, G. B. (2011). ...
  • Jae-Hwan Chang, & Tassiulas, L. (n.d.). Energy conserving routing in ...
  • Li, Q., Aslam, J., & Rus, D. (2001). Hierarchical power-aware ...
  • نمایش کامل مراجع