CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

A criterion for the monotonicity of the ratio of two Abelian integrals in piecewise-smooth differential systems

عنوان مقاله: A criterion for the monotonicity of the ratio of two Abelian integrals in piecewise-smooth differential systems
شناسه ملی مقاله: JR_IJNAA-15-6_001
منتشر شده در در سال 1403
مشخصات نویسندگان مقاله:

Rasoul Asheghi - Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, Iran, ۸۴۱۵۶-۸۳۱۱۱.
Rasool Kazemi - Department of Mathematical Sciences, Kashan University, Kashan, Iran
Ghadeer Mohammad - Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, Iran, ۸۴۱۵۶-۸۳۱۱۱.

خلاصه مقاله:
In this paper, we present a new criterion function for investigating the monotonicity of the ratio of two Abelian integrals in piecewise-smooth differential systems, and then, apply it to deal with some examples. More precisely,  we consider the Abelian integrals of the form\begin{equation*}I_{k}(h)=\oint_{\Gamma_{h}}f_{k}(x)ydx,\hspace{۰.۵cm} k=۰,۱,\end{equation*}with \Gamma_{h}=\Gamma_{h}^{L}+\Gamma^{R}_{h}, where \Gamma^{L}_{h}=\{(x,y)\in \mathbb{R}^{۲}| \frac{۱}{۲}y^۲+\Psi_{۲}(x)=h, \  x<۰ \} and \Gamma_{h}^{R}=\{(x,y)\in \mathbb{R}^{۲}|\frac{۱}{۲}y^۲+\Psi_۱(x)=h,\  x>۰ \}. We prove that the monotonicity of the presented criterion function implies the monotonicity of the ratio \frac{I_۱(h)}{I_۰(h)} and provide a few examples to explain the application of this criterion.

کلمات کلیدی:
Piecewise-smooth differential systems, Melnikov function, Monotonicity, Abelian integral, Limit cycle

صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/1970716/