The extended block Arnoldi method for solving generalized differential Sylvester equations
Publish place: Journal of Mathematical Modeling، Vol: 8، Issue: 2
Publish Year: 1399
نوع سند: مقاله ژورنالی
زبان: English
View: 175
This Paper With 18 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMMO-8-2_006
تاریخ نمایه سازی: 19 خرداد 1403
Abstract:
In the present paper, we propose a new method for solving large-scale generalized differential Sylvester equations, by projecting the initial problem onto the extended block Krylov subspace with an orthogonality Galerkin condition. This projection gives rise to a low-dimensional generalized differential Sylvester matrix equation. The low-dimensional equations is then solved by Rosenbrock or BDF method. We give some theoretical results and report some numerical experiments to show the effectiveness of the proposed method.
Keywords:
Extended block Krylov subspace , Generalized differential Sylvester matrix equation , low-rank approximate solution , Rosenbrock method , BDF method
Authors
Lakhlifa Sadek
Faculte&#۰۳۹; des Sciences, University Chouaib Doukkali, Morocco
Hamad Talibi Alaoui
Faculte&#۰۳۹; des Sciences, University Chouaib Doukkali, Morocco