A new outlier detection method for high dimensional fuzzy databases based on LOF
Publish place: Journal of Mathematical Modeling، Vol: 6، Issue: 2
Publish Year: 1397
نوع سند: مقاله ژورنالی
زبان: English
View: 128
This Paper With 14 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMMO-6-2_001
تاریخ نمایه سازی: 19 خرداد 1403
Abstract:
Despite the importance of fuzzy data and existence of many powerful methods for determining crisp outliers, there are few approaches for identifying outliers in fuzzy database. In this regard, the present article introduces a new method for discovering outliers among a set of multidimensional data. In order to provide a complete fuzzy strategy, first we extend the density-based local outlier factor method (LOF), which is successfully applied for identifying multidimensional crisp outliers. Next, by using the left and right scoring defuzzyfied method, a fuzzy data outlier degree is determined. Finally, the efficiency of the method in outlier detection is shown by numerical examples.
Keywords:
Authors
Alireza Fakharzadeh Jahromi
Department of Applied Mathematics, Shiraz University of Technology, Shiraz, Iran & Fars Elites Foundation, Shiraz, Iran, P.O. Box ۷۱۹۶۶-۹۸۸۹۳
Zahra Ebrahimi Mimand
PayamNoor University, Shiraz Branch, shiraz, Iran