CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

Existence of positive solutions for a p-Laplacian equation with applications to Hematopoiesis

عنوان مقاله: Existence of positive solutions for a p-Laplacian equation with applications to Hematopoiesis
شناسه ملی مقاله: JR_JMMO-10-2_002
منتشر شده در در سال 1401
مشخصات نویسندگان مقاله:

Seshadev Padhi - Department of Mathematics, Birla Institute of Technology, Mesra, Ranchi, India
Jaffar Ali - Department of Mathematics, Florida Gulf Coast University FortMyres, Florida, USA
Ankur Kanaujiya - Department of Mathematics, National Institute of Technology Rourkela, India
Jugal Mohapatra - Department of Mathematics, National Institute of Technology Rourkela, India

خلاصه مقاله:
This paper is concerned with the existence of at least one   positive solution for a boundary value problem (BVP), with  p-Laplacian, of the form    \begin{equation*}        \begin{split}            (\Phi_p(x^{'}))^{'} + g(t)f(t,x)  &= ۰, \quad t     \in (۰,۱),\\            x(۰)-ax^{'}(۰) = \alpha[x], & \quad            x(۱)+bx^{'}(۱) = \beta[x],        \end{split}    \end{equation*}where \Phi_{p}(x) = |x|^{p-۲}x is a one dimensional p-Laplacian operator with p>۱, a,b are real constants and \alpha,\beta are  the Riemann-Stieltjes integrals    \begin{equation*}        \begin{split}            \alpha[x] = \int \limits_{۰}^{۱} x(t)dA(t), \quad  \beta[x] = \int \limits_{۰}^{۱} x(t)dB(t),        \end{split}    \end{equation*}with A and B are functions of bounded variation. A Homotopy version of  Krasnosel'skii fixed point theorem is used to prove our results.

کلمات کلیدی:
Fixed point, positive solution, p-Laplacian, non-local boundary conditions, Boundary value problem

صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/1995572/