Existence of positive solutions for a p-Laplacian equation with applications to Hematopoiesis
عنوان مقاله: Existence of positive solutions for a p-Laplacian equation with applications to Hematopoiesis
شناسه ملی مقاله: JR_JMMO-10-2_002
منتشر شده در در سال 1401
شناسه ملی مقاله: JR_JMMO-10-2_002
منتشر شده در در سال 1401
مشخصات نویسندگان مقاله:
Seshadev Padhi - Department of Mathematics, Birla Institute of Technology, Mesra, Ranchi, India
Jaffar Ali - Department of Mathematics, Florida Gulf Coast University FortMyres, Florida, USA
Ankur Kanaujiya - Department of Mathematics, National Institute of Technology Rourkela, India
Jugal Mohapatra - Department of Mathematics, National Institute of Technology Rourkela, India
خلاصه مقاله:
Seshadev Padhi - Department of Mathematics, Birla Institute of Technology, Mesra, Ranchi, India
Jaffar Ali - Department of Mathematics, Florida Gulf Coast University FortMyres, Florida, USA
Ankur Kanaujiya - Department of Mathematics, National Institute of Technology Rourkela, India
Jugal Mohapatra - Department of Mathematics, National Institute of Technology Rourkela, India
This paper is concerned with the existence of at least one positive solution for a boundary value problem (BVP), with p-Laplacian, of the form \begin{equation*} \begin{split} (\Phi_p(x^{'}))^{'} + g(t)f(t,x) &= ۰, \quad t \in (۰,۱),\\ x(۰)-ax^{'}(۰) = \alpha[x], & \quad x(۱)+bx^{'}(۱) = \beta[x], \end{split} \end{equation*}where \Phi_{p}(x) = |x|^{p-۲}x is a one dimensional p-Laplacian operator with p>۱, a,b are real constants and \alpha,\beta are the Riemann-Stieltjes integrals \begin{equation*} \begin{split} \alpha[x] = \int \limits_{۰}^{۱} x(t)dA(t), \quad \beta[x] = \int \limits_{۰}^{۱} x(t)dB(t), \end{split} \end{equation*}with A and B are functions of bounded variation. A Homotopy version of Krasnosel'skii fixed point theorem is used to prove our results.
کلمات کلیدی: Fixed point, positive solution, p-Laplacian, non-local boundary conditions, Boundary value problem
صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/1995572/