A New Modified Bacterial Foraging MPPT Technique with Dynamic Mutation Rates for Photovoltaic Systems under Partial Shading Conditions

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 27

This Paper With 11 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJE-37-8_009

تاریخ نمایه سازی: 23 خرداد 1403

Abstract:

This research article presents a novel approach to Maximum Power Point Tracking (MPPT) for photovoltaic systems, employing a modified bacterial foraging algorithm with dynamically adjustable mutation rates. This method is specifically tailored to address the challenges presented by partial shading conditions, ensuring efficient and rapid tracking of the MPP while preventing local optima entrapment. To evaluate the performance of this innovative technique, a comparative analysis is conducted against the original bacterial foraging algorithm and the grey wolf optimization algorithm, both commonly employed in MPPT applications. The modified algorithm incorporates a unique strategy that dynamically adapts mutation rates based on the algorithm's convergence behavior, enhancing the tracking accuracy from ۸۱.۳۱% to ۸۹.۳۹%. To validate the effectiveness of the proposed technique, extensive simulations are carried out using MATLAB Simulink, considering various partial shading scenarios commonly encountered in practical photovoltaic applications. It's worth noting that the shading scenario data were extracted from the NASA Worldwide Prediction of Energy website, specifically from the city of Ain El Ibel Djelfa irradiance records. The simulation results unequivocally demonstrate the superiority of the modified bacterial foraging MPPT technique over both algorithms in terms of tracking efficiency (۰.۴s to ۰.۹s) and robustness under partial shading conditions. The findings of this research offer valuable insights into the potential advantages of employing a modified bacterial foraging approach for MPPT applications. This innovative techniques with its ability significantly enhance its performance in real-world scenarios involving partial shading, positioning it as a promising choice for optimizing photovoltaic system efficiency and power output.

Authors

O. Fergani

Laboratory of Identification, Commande, Control and Communication (LI۳CUB), University Mohamed KhiderBiskra, Biskra, Algeria

R. Mechgoug

Electrical Engineering Department, LARHYSS Laboratory, University of Biskra, Biskra, Algeria

A. Afulay Bouzid

Institute of Automation and Infocommunication, University of Miskolc, Miskolc, Hungary

N. Tkouti

Electrical Engineering Department, LARHYSS Laboratory, University of Biskra, Biskra, Algeria

A. Mazari

Laboratory of Applied and Automation and Industial Diagnostic (LAADI), University of Djelfa, Djelfa, Algeria

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Xu S, Shao R, Cao B, Chang L. Single-phase grid-connected ...
  • Balal AT, Jafarabadi YPT, Demir AT, Igene MT, Giesselmann MT, ...
  • Fergani O, Bouzid A, Tkouti N, Mechgoug R, editors. A ...
  • Ayyad S, Baker MB, Handam A, Al-Smadi T. Reducing the ...
  • Belhachat F, Larbes C. PV array reconfiguration techniques for maximum ...
  • Yang B, Zhu T, Wang J, Shu H, Yu T, ...
  • Arifin Z, Khairunisa N, Kristiawan B, Prasetyo SD, Bangun WB. ...
  • Chtita S, Motahhir S, El Hammoumi A, Chouder A, Benyoucef ...
  • Bhukya L, Kedika NR, Salkuti SR. Enhanced maximum power point ...
  • Al-Ezzi AS, Ansari MNM. Photovoltaic solar cells: a review. Applied ...
  • Abbassi A, Ben Mehrez R, Bensalem Y, Abbassi R, Kchaou ...
  • Senthilkumar S, Mohan V, Mangaiyarkarasi S, Karthikeyan M. Analysis of ...
  • Mechgoug R, Tkouti N, Okba F. A Adaptive Neuro-Fuzzy Inference ...
  • Premkumar M, Shankar N, Sowmya R, Jangir P, Kumar C, ...
  • Terrang CD, Sodipo BK, Abubakar MS. PV module single–diode model, ...
  • Gholami A, Ameri M, Zandi M, Ghoachani RG. Electrical, thermal ...
  • Gevorkov L, Domínguez-García JL, Romero LT. Review on solar photovoltaic-powered ...
  • Fergani Okba RM, Ahmed Bouzid Afulay, NaciraTkouti. Revolutionizing PV Pumping ...
  • Vega-Garita V, Alpizar-Gutierrez V, Alpízar-Castillo J. A practical method for ...
  • Rezazadeh S, Moradzadeh A, Pourhossein K, Akrami M, Mohammadi-Ivatloo B, ...
  • Heidari H, Tarafdar Hagh M. Optimal reconfiguration of solar photovoltaic ...
  • Rupesh M, Vishwanath T. Intelligent controllers to extract maximum power ...
  • Oufettoul H, Lamdihine N, Motahhir S, Lamrini N, Abdelmoula IA, ...
  • Dhimish M, Badran G, editors. Field Study of Photovoltaic Systems ...
  • Dhimish M, Tyrrell AM. Photovoltaic Bypass Diode Fault Detection Using ...
  • Vumbugwa M, Vorster F, McCleland JC, van Dyk E. Effects ...
  • Raina G, Sinha S. A comprehensive assessment of electrical performance ...
  • Osmani K, Haddad A, Jaber H, Lemenand T, Castanier B, ...
  • Bronneberg D, Reinders A, Frijns A, Debije M. Effects of ...
  • Yadav D, Singh N. Performance Evaluation of Basic, Modified, and ...
  • Kumar LA, Maheswari YU. Electromagnetic Interference and Electromagnetic Compatibility: Principles, ...
  • Rajabi A, Rajaei A, Tehrani VM, Dehghanian P, Guerrero JM, ...
  • Fİdan Ş, Sevİm D, Erkan E, editors. System Identification and ...
  • Rahmani B, Belkheiri M. Adaptive neural network output feedback control ...
  • Khan F, Zaid M, Tariq A, Khan MMA. A new ...
  • Aragon D, Unamuno E, Ceballos S, Barrena J. Comparative small-signal ...
  • Belboul Z, Toual B, Kouzou A, Bensalem A, editors. Optimal ...
  • نمایش کامل مراجع