Complexity analysis of primal-dual interior-point methods for convex quadratic programming based on a new twice parameterized kernel function

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 72

This Paper With 19 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JMMO-12-2_005

تاریخ نمایه سازی: 18 تیر 1403

Abstract:

In this paper, we present primal-dual interior-point methods (IPMs) for convex quadratic programming (CQP) based on a new twice parameterized kernel function (KF) with a hyperbolic barrier term.  To our knowledge, this is the first KF with a twice parameterized hyperbolic barrier term. By using some conditions and simple analysis, we derive the currently best-known iteration bounds for large- and small-update methods, namely, \textbf{O}\big(\sqrt{n}\log n\log\frac{n}{\epsilon}\big) and \textbf{O}\big(\sqrt{n}\log\frac{n}{\epsilon}\big), respectively, with  special choices of the parameters. Finally, some numerical results regarding the practical performance of the new proposed KF are reported.

Keywords:

Authors

Youssra Bouhenache

Laboratory of Pure and Applied Mathematics, Faculty of Exact Sciences and Informatics, University of Jijel, ۱۸۰۰۰ Jijel, Algeria

Wided Chikouche

Laboratory of Pure and Applied Mathematics, Faculty of Exact Sciences and Informatics, University of Jijel, ۱۸۰۰۰ Jijel, Algeria

Imene Touil

Laboratory of Pure and Applied Mathematics, Faculty of Exact Sciences and Informatics, University of Jijel, ۱۸۰۰۰ Jijel, Algeria

Sajad Fathi-Hafshejani

Shiraz University of Technology, Fars ۷۱۵۵۷-۱۳۸۷۶, Shiraz, Iran