Complexity analysis of primal-dual interior-point methods for convex quadratic programming based on a new twice parameterized kernel function
Publish place: Journal of Mathematical Modeling، Vol: 12، Issue: 2
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 72
This Paper With 19 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMMO-12-2_005
تاریخ نمایه سازی: 18 تیر 1403
Abstract:
In this paper, we present primal-dual interior-point methods (IPMs) for convex quadratic programming (CQP) based on a new twice parameterized kernel function (KF) with a hyperbolic barrier term. To our knowledge, this is the first KF with a twice parameterized hyperbolic barrier term. By using some conditions and simple analysis, we derive the currently best-known iteration bounds for large- and small-update methods, namely, \textbf{O}\big(\sqrt{n}\log n\log\frac{n}{\epsilon}\big) and \textbf{O}\big(\sqrt{n}\log\frac{n}{\epsilon}\big), respectively, with special choices of the parameters. Finally, some numerical results regarding the practical performance of the new proposed KF are reported.
Keywords:
Convex quadratic programming , kernel function , Interior-point methods , Large- and small-update methods
Authors
Youssra Bouhenache
Laboratory of Pure and Applied Mathematics, Faculty of Exact Sciences and Informatics, University of Jijel, ۱۸۰۰۰ Jijel, Algeria
Wided Chikouche
Laboratory of Pure and Applied Mathematics, Faculty of Exact Sciences and Informatics, University of Jijel, ۱۸۰۰۰ Jijel, Algeria
Imene Touil
Laboratory of Pure and Applied Mathematics, Faculty of Exact Sciences and Informatics, University of Jijel, ۱۸۰۰۰ Jijel, Algeria
Sajad Fathi-Hafshejani
Shiraz University of Technology, Fars ۷۱۵۵۷-۱۳۸۷۶, Shiraz, Iran