CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

Asymptotic behaviour of associated primes of monomial ideals with combinatorial applications

عنوان مقاله: Asymptotic behaviour of associated primes of monomial ideals with combinatorial applications
شناسه ملی مقاله: JR_JART-2-1_002
منتشر شده در در سال 1393
مشخصات نویسندگان مقاله:

M. Nasernejad - University of Payame Noor

خلاصه مقاله:
Let  R be a commutative Noetherian ring and I be an ideal of R. We say that I satisfies the persistence property if  \mathrm{Ass}_R(R/I^k)\subseteq \mathrm{Ass}_R(R/I^{k+۱}) for all positive integers k\geq ۱, which \mathrm{Ass}_R(R/I) denotes the set of associated prime ideals of I. In this paper, we introduce a class of square-free monomial ideals in the polynomial ring  R=K[x_۱,\ldots,x_n] over field K which are associated to  unrooted trees  such that if  G is a unrooted tree and I_t(G) is the ideal generated by the paths of G of length t, then J_t(G):=I_t(G)^\vee, where I^\vee denotes the Alexander dual of I, satisfies the persistence property. We also present a class of graphs such that the path ideals generated by paths of length two satisfy the persistence property. We conclude  this paper by giving a criterion for normally torsion-freeness of monomial ideals.

کلمات کلیدی:
Monomial ideals, associated prime ideals, trees, paths

صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/2026890/