Brain Tissue Segmentation Using an Unsupervised Clustering Technique Based on PSO Algorithm
Publish place: 17th Iranian Conference on Biomedical Engineering
Publish Year: 1389
نوع سند: مقاله کنفرانسی
زبان: English
View: 1,286
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICBME17_058
تاریخ نمایه سازی: 9 تیر 1392
Abstract:
Image thresholding is an important technique for image processing and pattern recognition. Several thresholding techniques have been proposed in the literature. In this paper for segmentation of magnetic resonance images, a novel method using a combination of the multilevel thresholding algorithm and the hierarchical evolutionary algorithm (HEA) is proposed. The HEA can be viewed as a variant of conventional genetic algorithms. The proposed technique is based on the participle swarm optimization (PSO) and, in fact, is an unsupervised clustering method based on an automatic multilevel thresholding approach. One advantage of the proposed method is that the number of clusters in the given image does not need to be known in advance. We evaluate and validate performance of the proposed method using simulation studies. The simulation results show that the accuracy of the proposed method is about 96%
Keywords:
Segmentation , Medical Images , hierarchical evolutionary algorithm (HEA) , Multi-thresholding method , participle swarm optimization (PSO)
Authors
Milad Azarbad
Faculty of Electrical and Computer Engineering BABOL University of Technology Babol, Iran
Ataollah Ebrahimzadeh
Faculty of Electrical and Computer Engineering BABOL University of Technology Babol, Iran
Abbas Babajani-Feremi
Image Analysis Lab., Radiology Department Henry Ford Hospital Detroit, USA
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :