تشخیص هوشمند سرطان پستان از طریق شبکه های ترکیبی عمیق با استفاده از تصاویر ترموگرافی
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: Persian
View: 496
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JHBMI-10-3_005
تاریخ نمایه سازی: 8 مرداد 1403
Abstract:
مقدمه: سرطان پستان، شایع ترین سرطان بدخیم در زنان است و بیشتر از سایر سرطان ها باعث مرگ و میر آنان می شود. روش ترموگرافی یکی از روش های تشخیص سرطان پستان است. مهم ترین چالش در تشخیص زود هنگام از روی این تصاویر می تواند مربوط به خطای انسانی و یا عدم دسترسی به شخص ماهر باشد. استفاده از روش های هوش مصنوعی در پردازش تصاویر در تشخیص زودهنگام و کاهش خطای انسانی می تواند موثر باشد. هدف کلی این پژوهش معرفی شبکه های ترکیبی عمیق برای تشخیص هوشمند سرطان پستان از تصاویر ترموگرافی است.
روش: تصاویر ترموگرافی مورد استفاده در این پژوهش از پایگاه داده DMR-IR جمع آوری شده است. ابتدا ویژگی های اصلی تصاویر توسط شبکه پیچشی عمیق CNN استخراج گردید. سپس در ادامه از دو الگوریتم FCNNs و SVM برای کلاس بندی سرطان پستان از تصاویر ترموگرافی استفاده شد.
نتایج: نرخ دقت برای الگوریتم های CNN_FC و CNN-SVM، به ترتیب ۹۴/۲%، ۹۵/۰% بود. علاوه بر این، پارامترهای قابلیت اطمینان هم برای این طبقه بندی کننده ها به ترتیب ۹۲/۱%، ۹۷/۵% و حساسیت برای هر یک از این طبقه بندی کننده ها به ترتیب ۹۵/۵%، ۹۴/۱% محاسبه شد.
نتیجه گیری: مدل پیشنهادی مبتنی بر شبکه ترکیبی عمیق دقت مناسبی نسبت به الگوریتم های مشابه دارد؛ بنابراین می تواند پزشکان را در تشخیص زودهنگام سرطان پستان از طریق تصاویر ترموگرافی کمک نموده و خطای انسانی را به حداقل برساند.
Keywords:
Authors
حانیه رضازاده تمرین
Master of Nuclear Engineering, Medical Radiation Research Center, Central Tehran Branch Islamic Azad University, Tehran, Iran
الهام صنیعی
Ph.D. in Nuclear Engineering, Assistant Professor, Medical Radiation Research Center, Central Tehran Branch Islamic Azad University, Tehran, Iran
مهدی صالحی باروق
Ph.D. in Nuclear Engineering, Assistant Professor, Medical Radiation Research Center, Central Tehran Branch Islamic Azad University, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :