بهبود دقت در تشخیص احساسات با استفاده از سیگنال های EEG با نوآوری در ترکیب استخراج ویژگی
عنوان مقاله: بهبود دقت در تشخیص احساسات با استفاده از سیگنال های EEG با نوآوری در ترکیب استخراج ویژگی
شناسه ملی مقاله: JR_JHBMI-5-1_005
منتشر شده در در سال 1397
شناسه ملی مقاله: JR_JHBMI-5-1_005
منتشر شده در در سال 1397
مشخصات نویسندگان مقاله:
هانیه زمانیان - Ph.D Student in Electrical Engineering, Electrical and Computer Engineering Dept., University of Birjand, Birjand, Iran
حسن فرسی - university of birjand
خلاصه مقاله:
هانیه زمانیان - Ph.D Student in Electrical Engineering, Electrical and Computer Engineering Dept., University of Birjand, Birjand, Iran
حسن فرسی - university of birjand
مقدمه: از آنجا که احساسات نقش مهمی در زندگی روزمره انسان بازی می کند، ایجاد روشی هوشمند جهت بهبود قابلیت تشخیص احساسات از سیگنال الکتروانفسالوگرافی (EEG) ، مبتنی بر تکنیک های پردازش سیگنال، ضروری به نظر می رسد. به علاوه، استفاده از طبقه بند ماشین بردار پشتیبان بهینه شده با الگوریتم تکاملی ژنتیک، از نوآوری های این پژوهش در بخش طبقه بندی می باشد.
روش: روش پیشنهادی با تمرکز بر روی استخراج و طبقه بندی ویژگی ها بر مبنای سیگنال های دریافتی از مغز سعی بر بهبود تشخیص احساسات دارد. در این راستا با شناسایی کانال های EEG که در استخراج ویژگی نقش دارند، از ویژگی های زمان – فرکانس سیگنال های EEG استفاده شده و این ویژگی ها توسط یک طبقه بند مناسب، طبقه بندی می شوند. الگوریتم پیشنهادی بر روی پایگاه داده DEAP که با ثبت سیگنال EEG از ۳۲ شرکت کننده در هنگام تماشای ۴۰ نوع ویدئو-موسیقی تهیه شده است، مورد آزمایش قرار گرفت.
نتایج: نتایج به دست آمده نشان می دهد که انتخاب ۷.۵ ثانیه و ۳ کانال از داده های ورودی، نتایج قابل قبولی را ارائه می دهد. به علاوه باعث کاهش حجم محاسبات و حافظه مورد نیاز برای پردازش شده و به دقت ۸۶/۹۳% در طبقه بندی ۴ احساس دست یافته است.
نتیجه گیری: بهبود دقت در تشخیص احساسات مبتنی بر سیگنال EEG گام های متعددی دارد که استخراج ویژگی های کارآمد و طبقه بندی موثر آن ها دو گام مهم در این راستا می باشد. بر اساس نتایج این تحقیق، در نظر گرفتن ویژگی های حوزه های زمان و فرکانس سیگنال های EEG و به کارگیری الگوریتم SVM چند کلاسه که توسط الگوریتم تکاملی ژنتیکی بهینه سازی شده است، عملکرد بهتری را فراهم می کند.
کلمات کلیدی: Emotion recognition, EEG signal, neural network and support vector machine (SVM), تشخیص احساسات, EEG, شبکه های عصبی, ماشین بردار پشتیبان
صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/2036496/