Using GPT-۲ Model and Hazm Library for Persian Text Generation
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 108
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JECEI-12-2_001
تاریخ نمایه سازی: 15 مرداد 1403
Abstract:
kground and Objectives: This article explores a method for generating Persian texts using the GPT-۲ language model and the Hazm library. Researchers and writers often require tools that can assist them in the writing process and even think on their behalf in various domains. By leveraging the GPT-۲ model, it becomes possible to generate acceptable and creative texts, which increases writing speed and efficiency, thus mitigating the high costs associated with article writing.Methods: In this research, the GPT-۲ model is employed to generate and predict Persian texts. The Hazm library is utilized for natural language processing and automated text generation. The results of this study are evaluated using different datasets and output representations, demonstrating that employing the Hazm library with input data exceeding ۱۰۰۰ yields superior outcomes compared to other text generation methodsResults: Through extensive experimentation and analysis, the study demonstrates the effectiveness of this combination in generating coherent and contextually appropriate text in the Persian language. The results highlight the potential of leveraging advanced language models and linguistic processing tools for enhancing natural language generation tasks in Persian. The findings of this research contribute to the growing field of Persian language processing and provide valuable insights for researchers and practitioners working on text generation applications in similar languages.Conclusion: Overall, this study showcases the promising capabilities of the GPT-۲ model and Hazm library in Persian text generation, underscoring their potential for future advancements in the field This research serves as a valuable guide and tool for generating Persian texts in the field of research and scientific writing, contributing to cost and time reduction in article writing
Keywords:
Authors
M. Soluki
Computer science of Refah University college, Tehran, Iran.
Z. Askarinejadamiri
Computer science of Refah University college, Tehran, Iran.
N. Zanjani
Computer science of Refah University college, Tehran, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :