Effective Stiffness and Damping Analysis of Steel Damper to Lateral Cyclic Loading
Publish place: Civil Engineering Journal، Vol: 10، Issue: 7
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 52
This Paper With 13 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CEJ-10-7_017
تاریخ نمایه سازی: 30 مرداد 1403
Abstract:
Steel dampers are components used in building structures to reduce vibration and energy generated by dynamic loads such as earthquakes. Several factors affect the effectiveness of steel dampers in reducing energy, including the cross-sectional area, mass distribution, cross-sectional geometry, and material stiffness. The cross-sectional geometry or shape of the steel damper can affect how energy is absorbed and dissipated in the structural system. Cross sections with different geometric variations can have different mechanical responses to dynamic loads. This study aims to analyze which type of steel damper is effective in terms of stiffness and damping capacity against lateral cyclic loads. The steel damper cross-sectional variations used are slit steel dampers (SSDs), tapered steel dampers (TSDs), and oval steel dampers (OSDs). Cyclic testing of the dampers used displacement control with the same target deviation for all three damper types. The results showed that the stress and strain distributions of the oval steel damper were more even than those of the other two models. The variations in the energy dissipation capacities of the three cross-section variations are relatively the same. However, the slit steel damper type has the best stiffness compared to the other two types. This research is ultimately expected to influence the science of the structure of a building in preventing and anticipating earthquakes or other disasters. Doi: ۱۰.۲۸۹۹۱/CEJ-۲۰۲۴-۰۱۰-۰۷-۰۱۷ Full Text: PDF
Keywords:
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :