ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

PREDICTION OF SONIC LOG USING ADAPTIVE NEURO FUZZY INFERENCE SYSTEM

Year: 1392
COI: AIHE06_070
Language: EnglishView: 1,081
This Paper With 6 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 6 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

Vahid Mojarradi - Department of Petroleum Engineering, ShahidBahonar University of Kerman, Kerman, Iran- Young Researchers Society, ShahidBahonar University of Kerman,Kerman, Iran
Mahin Schaffie - Energy and Environmental Research Center (EERC), ShahidBahonar University of Kerman, Kerman, Iran -Chemical Engineering Department, ShahidBahonar University ofKerman, Kerman, Iran
Mohammad Ranjabar - Energy and Environmental Research Center (EERC), ShahidBahonar University of Kerman, Kerman, Iran -4Department of Mining Engineering, ShahidBahonar University of Kerman, Kerman, Iran

Abstract:

Well logging is an important operation in petroleum production industry which is done during or afterdrilling. There are a lot of parameters which recorded during in well logging, But because of operationalcondition and financial reasons, sometimes it is not probable to record all logs. Sonic log is one of theimportant parameters in porosity evaluation which is sometimes neglected because of referred reasons. Inthese situations, a method to predict this parameter will be very useful. Today, soft computing methodswhich are based on Artificial intelligence are widely used for modeling complicated systems . AdaptiveNero Fuzzy Interference System (ANFIS) is one of the powerful soft computing method which is used inthis Study to predict the value of sonic log. For this aim, data from 3 wells in a field in south of Iran willgathered, data was consisted of parameters like resistivity, gamma ray, photoelectric index (PE),neutron, density and sonic tool output, after normalizing these data in [0 1] interval, ANFISsystem constructed and an initial by trialand error (using small set of data) it concluded that by using PEand neutron optimum prediction will be done (minimum error and input).then main predictionswere generated through two different cases. Case one involved all three wells for training, calibration andverification process. In the second casetwo wells used for training and calibration and the third well wasused for verification,after simulating the ANFIS good coefficient factor and appropriate errorsobtained.(correlation factor more than 0.92 and MSE less than 0.01 for all cases)butfor the second case,theerror was a little more than case in which all data were combined.

Paper COI Code

This Paper COI Code is AIHE06_070. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/205964/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Mojarradi, Vahid and Schaffie, Mahin and Ranjabar, Mohammad,1392,PREDICTION OF SONIC LOG USING ADAPTIVE NEURO FUZZY INFERENCE SYSTEM,6th Trans-Regional Conference On Advances In Engineering Sciences ,Tonekabon,,,https://civilica.com/doc/205964

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • Banchs, R., Michelena, R., From 3D seismic attributes to _ ...
  • Mohaghegh, S., Richardson, M., Ameri, SVirtual magnetic imaging logs: generation ...
  • Proceedings, SPE Eastern Regional Conference, Nov. 9-11, , 1998. Pittsburgh, ...
  • Mohaghegh, S., Popa, A.. Koperna, G., Reducing the cost of ...
  • analysis using virtual intelligence techniques. SPE 57454. In: Proceedings, SPE ...
  • Bhuiyan, M.. An Intelligent System s Approach to Reservoir Characteriz ...
  • in Cotton Valley. M.S. thesis.West Virginia University, Morgantown, West Virginia, ...
  • Zadeh, L.A.. Fuzzy sets, Information and Control, 1965 8 (338-353). ...
  • Zadeh, L.A., Toward a generalized theory of uncertainty (GTU) - ...
  • Mamdani, E.H, Advances in the linguistic synthesis of fuzzy controllers, ...
  • Jang, J.R., ANFIS: adaptive -network-based fuzzy inference system, IEEE transaction ...
  • Melin, P., Castillo, O., Intelligent control of a stepping motor ...
  • Research Info Management

    Certificate | Report | من نویسنده این مقاله هستم

    اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    Scientometrics

    The specifications of the publisher center of this Paper are as follows:
    Type of center: دانشگاه دولتی
    Paper count: 16,298
    In the scientometrics section of CIVILICA, you can see the scientific ranking of the Iranian academic and research centers based on the statistics of indexed articles.

    New Papers

    Share this page

    More information about COI

    COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

    The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

    Support