A Novel Approach for Naive Diversification: An Application of Multiple Risk Measures to Enhance ۱/N Portfolio Performance
Publish place: International Journal of Management, Accounting and Economics (IJMAE)، Vol: 11، Issue: 8
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 72
This Paper With 16 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMAE-11-8_001
تاریخ نمایه سازی: 3 شهریور 1403
Abstract:
The ۱/N investment strategy, characterized by equally allocating wealth among available investment options, has garnered significant scholarly attention. Simultaneously, risk assessment and management play a critical role in financial decision-making, leading to the development of a diverse array of risk measure models. This paper aims to synthesize these two strategies and propose a novel approach for constructing a naive diversification strategy by incorporating commonly employed risk measures in financial analysis. The research involves an in-depth exploration of various risk measures utilized by financial professionals to enhance effective risk management. These measures include Mean-Variance (MV), Mean Absolute Deviation (MAD), Semi Standard Deviation (MSV), Value at Risk (VaR), Conditional Value at Risk (CVaR), Entropic Value at Risk (EVaR), Drawdown at Risk (DaR) of uncompounded cumulative returns, Conditional Drawdown at Risk (CDaR) of uncompounded cumulative returns, and Entropic Drawdown at Risk (EDaR) of uncompounded cumulative returns. To validate the efficacy of the proposed model, a real-world empirical case study utilizing the annual financial statements of the NASDAQ-۱۰۰ (NDX) database is conducted. The empirical findings from this study carry practical implications for investors and risk managers engaged in portfolio management.
Authors
Mostafa Shabani
School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran
Hossein Ghanbari
School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran
Rouzbeh Ghousi
School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran
Emran Mohammadi
School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :