Analyzing and Improving Flexural and Impact Strength of Composites Enhanced with Nanoparticles and Natural Fibers
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 59
This Paper With 16 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MACS-11-2_017
تاریخ نمایه سازی: 10 شهریور 1403
Abstract:
One of the enormous challenges of bio-composites is the improvement of the flexural and impact strength. Therefore, the optimization and parametric investigation of nanocomposites reinforced with natural hybrid fibers is the main focus of this study. Kenaf/basalt/nanographene fibers in polypropylene were used to reinforce bio-composite specimens. Response Surface Method (RSM) was applied to study and present a mathematical model for the performance of bio-composite according to a number of parameters including the basalt fiber weight percentage, kenaf fiber as well as nanographene. The performance of the specimens was discussed under the bending and impact tests and the outcomes were explained by the use of FESEM images. The optimal value of the parameters was set as a multi-objective according to the increase of the flexural strength and energy absorption, the reduction of the specimens’ weight, and also a Pareto diagram was illustrated considering the design goals. The findings revealed that the composite specimen with the best flexural behavior had the flexural strength of ۵۱.۲۵۵۸ MPa, which consisted of ۰.۸۷۲۳ wt% of basalt fibers, ۱۵% of kenaf fibers, and ۰.۷۶۸۸۱% of graphene nanoparticles. In addition, the best specimen in terms of impact had ۱۱۶,۸۰۹ J / m energy absorption, which included ۸.۲۳% basalt fibers, ۰.۸۰۸% graphene nanoparticles, and ۱۵% kenaf fibers.
Keywords:
multi-objective optimization , Mechanical properties , modeling , Response surface method (RSM) , Bio-composite
Authors
Hossein Taghipoor
Faculty of Mechanical Engineering, Velayat University, P.O. Box ۹۹۱۱۱-۳۱۳۱۱, Iranshahr, Iran
Jaber Mirzaei
Faculty of Mechanical Engineering, Semnan University, Semnan, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :