Optimization of Ventilation Register Locations for Reducing Suspended Particle Concentration Using the Taguchi Method

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 41

This Paper With 12 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JACM-10-4_008

تاریخ نمایه سازی: 17 شهریور 1403

Abstract:

In the present study, the Multi-Relaxation Time Lattice Boltzmann method (MRT-LBM) was employed to solve the airflow inside a scaled room model with dimensions of ۰.۹۱۴×۰.۴۵۷×۰.۳۰۵ m. This room model is considered a representative space with a ۱:۱۰ scale to an actual room. The selected room is equipped with a ventilation system. For optimizing the inlet and outlet locations of the airflow, ۳۲ different positions in terms of length, width, and height for the inlet and ۴ positions for the outlet were considered. The Taguchi method was utilized for optimizing the inlet and outlet locations, reducing the required number of experiments from ۱۲۸ to ۱۶. To assess the number of suspended particles, ۸۶۴۰۰ particles with a size of ۱µm were injected into the room. Then, the particle behaviors were examined for a total duration of ۶۰ seconds. The obtained results indicate that the location of the air conditioning system significantly influences the concentration of airborne particles responsible for disease transmission. Utilizing the Taguchi optimization method, optimal positions for the inlet and outlet air were determined to minimize the number of suspended particles in the room (the best position) and maximize it (the worst position).

Authors

H. Sajjadi

Department of Mechanical Engineering, University of Bojnord, Bojnord, Iran

S.N. Nabavi

Department of Mechanical Engineering, University of Bojnord, Bojnord, Iran

G. Ahmadi

Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, USA

A. Amiri Delouei

Department of Mechanical Engineering, University of Bojnord, Bojnord, Iran

H. Naeimi

Department of Mechanical Engineering, University of Bojnord, Bojnord, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Sukop, M., Thorne, D., Lattice Boltzmann modeling: an introduction for ...
  • Succi, S., The lattice Boltzmann equation: for fluid dynamics and ...
  • Chen, S., Doolen, G.D., Lattice Boltzmann method for fluid flows, ...
  • Rahman, A., Redwan, D.A., Thohura, S., Kamrujjaman, M., Molla, M.M., ...
  • Wang, L., Liu, Z., Rajamuni, M., Recent progress of lattice ...
  • Liu, W., Wu, C.-Y., Modelling complex particle–fluid flow with a ...
  • Mohammadifar, H., Sajjadi, H., Rahnama, M., Jafari, S., Wang, Y., ...
  • Sajjadi, H., Atashafrooz, M., Delouei, A.A., Wang, Y., The effect ...
  • Sajjadi, H., Ahmadi, G., Amiri Delouei, A., Effect of inlet ...
  • Sugaya, K., Imamura, T., Turbulent flow simulations of the common ...
  • Brenner, O., Piroozmand, P., Jenny, P., Efficient assimilation of sparse ...
  • Vandenhoeck, R., Lani, A., Steelant, J., Development of an implicit ...
  • Rosas, R.H., Wang, B.-C., DNS Study of turbulent heat transfer ...
  • Sajjadi, H., Salmanzadeh, M., Ahmadi, G., Jafari, S., LES and ...
  • Balachandar, S., Zaleski, S., Soldati, A., Ahmadi, G., Bourouiba, L., ...
  • Gorbunov, B., Aerosol particles generated by coughing and sneezing of ...
  • Bahramian, A., Mohammadi, M., Ahmadi, G., Effect of indoor temperature ...
  • Bahramian, A., Ahmadi, G., Effect of sneeze flow velocity profiles ...
  • Karami, S., Lakzian, E., Ahmadi, G., Prediction of COVID-۱۹ infection ...
  • Harish, S., Nihaarikha, G., Harish, R., Computational study of Corona ...
  • Mirzaie, M., Lakzian, E., Khan, A., Warkiani, M.E., Mahian, O., ...
  • Mofakham, A.A., Ahmadi, G., On random walk models for simulation ...
  • Ahmed, T., Wendling, H.E., Mofakham, A.A., Ahmadi, G., Helenbrook, B.T., ...
  • Mofakham, A.A., Helenbrook, B.T., Erath, B.D., Ferro, A.R., Ahmed, T., ...
  • Mofakham, A.A., Helenbrook, B.T., Erath, B.D., Ferro, A.R., Ahmed, T., ...
  • Obeid, S., White, P., Rosati Rowe, J., Ilacqua, V., Rawat, ...
  • Karami, S., Lakzian, E., Shabani, S., Dykas, S., Salmani, F., ...
  • Muthusamy, J., Haq, S., Akhtar, S., Alzoubi, M.A., Shamim, T., ...
  • Ahmadzadeh, M., Shams, M., A numerical approach for preventing the ...
  • Xu, A., Tao, S., Shi, L., Xi, H.D., Transport and ...
  • Kechagias, J., Kitsakis, K., Vaxevanidis, N., Comparison of full versus ...
  • Fountas, N., Aslani, K.-E., Kechagias, J., Kyratsis, P., Vaxevanidis, N., ...
  • Karna, S.K., Sahai, R., An overview on Taguchi method, International ...
  • Freddi, A., Salmon, M., Design principles and methodologies: From conceptualization ...
  • d'Humières, D., Multiple–relaxation–time lattice Boltzmann models in three dimensions, Philosophical ...
  • Li, A., Ahmadi, G., Dispersion and deposition of spherical particles ...
  • Posner, J., Buchanan, C., Dunn-Rankin, D., Measurement and prediction of ...
  • Tian, Z.F., Tu, J.Y., Yeoh, G., Yuen, R., On the ...
  • نمایش کامل مراجع