English Language Teaching Pages in Focus: A Multimodal Discourse Analysis
Publish place: Journal of Teaching Language Skills، Vol: 43، Issue: 3
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 49
This Paper With 31 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JTLS-43-3_004
تاریخ نمایه سازی: 24 شهریور 1403
Abstract:
Pedagogic discourse is inherently multimodal, and teaching is a multimodal experience that takes place through the integration of (spoken) language and an array of other communicative modes. Similarly, modern multimedia platforms, such as Instagram, also have the potential to be used as multimodal educational tools that make use of different modalities alongside text. As such, the present study aimed to analyze three prominent Instagram pages, including BBC Learning English, Learning English with Oxford, and Learning English with Cambridge, through the multimodal discourse analysis toolkit proposed by Ledin and Machin (۲۰۲۰). Qualitative data analysis was run to analyze the data. The findings of the study indicated that the English Language Teaching (ELT) pages analyzed employed a diverse array of semiotic resources, spanning from the incorporation of various images to the careful selection of different colors and typography to effectively convey their intended meanings. Additionally, the visual representations employed in the posts were largely consistent with, and in some cases, complementary to the overall content of the posts, and the underlying messages they aimed to convey. Specifically, the visual representations in the ELT pages were purposefully designed to reflect the culture of the English-speaking community as a clear means of reinforcement.
Keywords:
Authors
Seyede Saeedeh Shahami
Department of English Language and Literature, University of Guilan, Rasht, Iran
Abdorreza Tahriri
Department of English Language and Literature, University of Guilan, Rasht, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :