Deep Q-Learning Enhanced Variable Neighborhood Search for Influence Maximization in Social Networks

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 76

This Paper With 14 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJWR-7-2_003

تاریخ نمایه سازی: 1 مهر 1403

Abstract:

A social network consists of individuals and the relationships between them, which often influence each other. This influence can propagate behaviors or ideas through the network, a phenomenon known as influence propagation. This concept is crucial in applications like advertising, marketing, and public health. The influence maximization (IM) problem aims to identify key individuals in a social network who, when influenced, can maximize the spread of a behavior or idea. Given the NP-hard nature of IM, non-exact algorithms, especially metaheuristics, are commonly used. However, traditional metaheuristics like the variable neighborhood search (VNS) struggle with large networks due to vast solution spaces. This paper introduces DQVNS (Deep Q-learning Variable Neighborhood Search), which integrates VNS with deep reinforcement learning (DRL) to enhance neighborhood structure determination in VNS. By using DQVNS, we aim to achieve performance similar to population-based algorithms and utilize the information created step by step during the algorithm's execution. This adaptive approach helps the VNS algorithm choose the most suitable neighborhood structure for each situation and find better solutions for the IM problem. Our method significantly outperforms existing metaheuristics and IM-specific algorithms. DQVNS achieves a ۶۳% improvement over population-based algorithms on various datasets. The results of implementation on different real-world social networks of varying sizes demonstrate the superiority of this algorithm compared to existing metaheuristic, IM-specific algorithms, and network-specific measures.

Authors

Afifeh Maleki Ghalghachi

Department of Electrical and Computer Engineering, Tarbiat Modares University (TMU), Tehran, Iran

Mehdy Roayaei

Department of Electrical and Computer Engineering, Tarbiat Modares University (TMU), Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Razaghi, M. Roayaei, and N. M. Charkari, “On the Group-Fairness-Aware ...
  • Li, S. S. Bhowmick, A. Sun, and J. Cui, “Conformity-aware ...
  • Huang, H. Shen, Z. Meng, H. Chang, and H. He, ...
  • Coró, G. D’angelo, and Y. Velaj, “Link Recommendation for Social ...
  • Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of ...
  • Hansen, N. Mladenović, J. Brimberg, and J. A. M. Pérez, ...
  • Mladenović, A. Alkandari, J. Pei, R. Todosijević, and P. M. ...
  • Kempe, J. Kleinberg, and É. Tardos, “Influential Nodes in a ...
  • Nguyen and R. Zheng, “On Budgeted Influence Maximization in Social ...
  • Wilson, A. Sala, K. P. N. Puttaswamy, and B. Y. ...
  • M. Tabak, M. Takami, J. M. C. Rocha, D. O. ...
  • Brin and L. Page, “Reprint of: The anatomy of a ...
  • Chen, Y. Wang, and S. Yang, “Efficient influence maximization in ...
  • Goyal, W. Lu, and L. V. S. Lakshmanan, “SIMPATH: An ...
  • Narayanam and Y. Narahari, “A Shapley Value-Based Approach to Discover ...
  • Bucur and G. Iacca, “Influence Maximization in Social Networks with ...
  • W. Tsai, Y.-C. Yang, and M.-C. Chiang, “A Genetic NewGreedy ...
  • Li, C. Wang, S. Zhang, G. Zhou, D. Chu, and ...
  • Gong, J. Yan, B. Shen, L. Ma, and Q. Cai, ...
  • S. Singh, K. Singh, A. Kumar, and B. Biswas, “ACO-IM: ...
  • Cantini, F. Marozzo, S. Mazza, D. Talia, and P. Trunfio, ...
  • Rahdar, R. Ghanbari, and K. Ghorbani-Moghadam, “Tabu search and variable ...
  • Djukanović, A. Kartelj, D. Matić, M. Grbić, C. Blum, and ...
  • Kalatzantonakis, A. Sifaleras, and N. Samaras, “A reinforcement learning-Variable neighborhood ...
  • Zhang and L. Chen, “A general variable neighborhood search algorithm ...
  • Amrani, A. Martel, N. Zufferey, and P. Makeeva, “A variable ...
  • Bierlaire, M. Thémans, and N. Zufferey, “A Heuristic for Nonlinear ...
  • F. Rosa, M. J. F. Souza, S. R. de Souza, ...
  • J. Liao and C.-C. Cheng, “A variable neighborhood search for ...
  • Stenger, D. Vigo, S. Enz, and M. Schwind, “An Adaptive ...
  • P. Queiroz dos Santos, J. D. de Melo, A. D. ...
  • Li and H. Tian, “A two-level self-adaptive variable neighborhood search ...
  • Todosijević, M. Mladenović, S. Hanafi, N. Mladenović, and I. Crévits, ...
  • Shahrabi, M. A. Adibi, and M. Mahootchi, “A reinforcement learning ...
  • Thevenin and N. Zufferey, “Learning Variable Neighborhood Search for a ...
  • Shahmardan and M. S. Sajadieh, “Truck scheduling in a multi-door ...
  • Chen, R. Qu, R. Bai, and W. Laesanklang, “A variable ...
  • Zhao, L. Zhang, J. Cao, and J. Tang, “A cooperative ...
  • Zhang, Z. Huang, and L. Zou, “Neighborhood Search Acceleration Based ...
  • Alicastro, D. Ferone, P. Festa, S. Fugaro, and T. Pastore, ...
  • Gu, S. Zhao, and Y. Wang, “Reinforcement learning enhanced multi-neighborhood ...
  • Wang, D. Lei, and J. Cai, “An adaptive artificial bee ...
  • Alrashidi and M. A. Ghamdi, “Variable Neighborhood Search Based on ...
  • Zhang, H. Geng, C. Li, M. Gen, G. Zhang, and ...
  • D. P. Pugliese, D. Ferone, P. Festa, F. Guerriero, and ...
  • Mnih et al., “Human-level control through deep reinforcement learning,” Nature, ...
  • Clifton and E. Laber, “Q-Learning: Theory and Applications,” Annu Rev ...
  • A. Beni and A. Bouyer, “TI-SC: top-k influential nodes selection ...
  • Bucur and G. Iacca, “Influence Maximization in Social Networks with ...
  • Arora, S. Galhotra, and S. Ranu, “Debunking the Myths of ...
  • Roayaei, “On the binarization of Grey Wolf optimizer: a novel ...
  • M. Kabir, Md. Shahjahan, and K. Murase, “A new local ...
  • Bello, Y. Gomez, A. Nowe, and M. M. Garcia, “Two-Step ...
  • J. Santana, M. Macedo, H. Siqueira, A. Gokhale, and C. ...
  • K. Bhattacharjee and S. P. Sarmah, “A binary firefly algorithm ...
  • Kaya, “Feature selection using binary cuckoo search algorithm,” in ۲۰۱۸ ...
  • Zareie, A. Sheikhahmadi, and M. Jalili, “Identification of influential users ...
  • Zareie, A. Sheikhahmadi, and K. Khamforoosh, “Influence maximization in social ...
  • S. T. Olanrewaju, R. Ahmad, and M. Mahmudin, “Influence Maximization ...
  • نمایش کامل مراجع