Data-driven evaluation of background radiation safety using machine learning and statistical analysis
Publish place: Big Data and Computing Visions، Vol: 4، Issue: 2
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 97
This Paper With 25 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_BDCV-4-2_003
تاریخ نمایه سازی: 14 مهر 1403
Abstract:
The entire globe is radioactive naturally, and humans are constantly exposed to background radiation from cosmic rays and the radioactive materials in their environment. The concentration and effects of background radiation can vary based on geographical location. Measuring background radiation levels is important for assessing potential health impacts. This study presents a comprehensive data analysis to investigate the levels and impact of background radiation levels in Sahiwal, Pakistan, and determine if the levels are safe according to international standards. Radiation counts were measured using a Geiger-Muller counter at several locations in Sahiwal over ۴۰ days. The data was analyzed using normal distribution techniques to calculate the effective absorbed dose of the ionizing radiation in human tissue. The calculated dose was then compared to internationally accepted safe exposure levels. The effective absorbed dose of ionizing radiation in Sahiwal was determined as ۰.۲۷ mSv/year, significantly lower than the worldwide average background dose of ۲.۴ mSv/year. Based on this result and comparisons to international standards, the study concluded that Sahiwal is a safe area in terms of background radiation exposure for human living. However, more comprehensive measurements over longer periods could provide additional insights.
Keywords:
Authors
Muhammad Abid
Department of Mathematics, North Carolina State University, Raleigh, ۲۷۶۹۵ NC, United States.
Muhammad Shahid
Department of Physics and Astronomy, Georgia State University, ۳۰۳۰۳ Atlanta, GA, USA.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :