A Neural Network Model of Risk and Protective Factors for Poor Sleep Quality in Healthcare Providers: Role of Aggression and Self-regulation

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 48

This Paper With 7 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJHS-10-2_001

تاریخ نمایه سازی: 25 مهر 1403

Abstract:

Background: Although the literature discusses the benefits of good sleep on physiological, psychological, and physical health, poor sleep quality is common among healthcare providers. The present study aimed to predict poor sleep quality among healthcare providers based on multiple risk factors (aggression, gender, and age) and the protective factor of self-regulation using a neural network model.Methods: Using multistage cluster sampling, a group of ۴۰۰ healthcare workers (۷۰% female, with an age average of ۳۲ years) from Kermanshah city in western Iran were selected for the cross-sectional study. Data were collected using the Pittsburgh Sleep Quality Index (PSQI), the Buss-Perry Aggression Questionnaire (BPAQ), and the Self-Regulation Questionnaire (SRQ). A neural network model and receiver operating characteristic (ROC) curve were used for data analysis.Results: Four hidden units were found in a single hidden layer extracted using the current model. More than ۸۴% of the training and testing models accurately predicted good and poor sleepers. The neural network model's good predictive value was indicated by the Area under the ROC Curve (AUC=۰.۸۶۳). The results imply that self-regulation (۰.۳۰), anger (۰.۲۰), physical aggression (۰.۱۹), verbal aggression (۰.۱۱), hostility (۰.۱۰), age (۰.۰۶), and sex (۰.۰۵) have normalized importance values ranging from ۱۸% to ۱۰۰%, making them significant predictors of both the good and poor sleep subgroups.Conclusions: The present neural network-based algorithm, which considers the risk and protective factors of poor sleep quality, could be effectively used by healthcare providers.Background: Although the literature discusses the benefits of good sleep on physiological, psychological, and physical health, poor sleep quality is common among healthcare providers. The present study aimed to predict poor sleep quality among healthcare providers based on multiple risk factors (aggression, gender, and age) and the protective factor of self-regulation using a neural network model. Methods: Using multistage cluster sampling, a group of ۴۰۰ healthcare workers (۷۰% female, with an age average of ۳۲ years) from Kermanshah city in western Iran were selected for the cross-sectional study. Data were collected using the Pittsburgh Sleep Quality Index (PSQI), the Buss-Perry Aggression Questionnaire (BPAQ), and the Self-Regulation Questionnaire (SRQ). A neural network model and receiver operating characteristic (ROC) curve were used for data analysis. Results: Four hidden units were found in a single hidden layer extracted using the current model. More than ۸۴% of the training and testing models accurately predicted good and poor sleepers. The neural network model's good predictive value was indicated by the Area under the ROC Curve (AUC=۰.۸۶۳). The results imply that self-regulation (۰.۳۰), anger (۰.۲۰), physical aggression (۰.۱۹), verbal aggression (۰.۱۱), hostility (۰.۱۰), age (۰.۰۶), and sex (۰.۰۵) have normalized importance values ranging from ۱۸% to ۱۰۰%, making them significant predictors of both the good and poor sleep subgroups. Conclusions: The present neural network-based algorithm, which considers the risk and protective factors of poor sleep quality, could be effectively used by healthcare providers.

Authors

Shakiba Rezaei

Department of Psychology, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran

Azita Chehri

Department of Psychology, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.

Saeede Sadat Hosseini

Department of Psychology, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.

Mokhtar Arefi

Department of Psychology, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.

Hassan Amiri

Department of Psychology, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Bahremand M, Komasi S. Which symptoms are the psychopathological core ...
  • Clement-Carbonell V, Portilla-Tamarit I, Rubio-Aparicio M, Madrid-Valero JJ. Sleep quality, ...
  • Tahmasian M, Samea F, Khazaie H, Zarei M, Kharabian Masouleh ...
  • Juárez-Rojop IE, Fresán A, Genis-Mendoza AD, Cerino-Palomino C, Nolasco-Rosales GA, ...
  • Khazaie H, Zakiei A, Rezaei M, Komasi S, Brand S. ...
  • Khoshakhlagh AH, Al Sulaie S, Yazdanirad S, Orr RM, Dehdarirad ...
  • Sheppard N, Hogan L. Prevalence of insomnia and poor sleep ...
  • Zhang YS, Jin Y, Rao WW, Jiang YY, Cui LJ, ...
  • Aliyu I, Mohammed II, Lawal TO, Gudaji M, Garba N, ...
  • Binjabr MA, Alalawi IS, Alzahrani RA, Albalawi OS, Hamzah RH, ...
  • Rao WW, Li W, Qi H, Hong L, Chen C, ...
  • Zeng LN, Yang Y, Wang C, Li XH, Xiang YF, ...
  • Akbari V, Hajian A, Mirhashemi MS. Evaluating of sleep quality ...
  • Haseli A, Egdampur F, Qaderi K, Kaffashian MR, Delpisheh A. ...
  • Janatmakan Amiri A, Morovatdar N, Soltanifar A, Rezaee R. Prevalence ...
  • Kudrnáčová M, Kudrnáč A. Better sleep, better life? testing the ...
  • Albinsaleh AA, Al Wael WM, Nouri MM, Alfayez AM, Alnasser ...
  • Ionescu CG, Popa-Velea O, Mihailescu AI, Talasman AA, Badarau IA. ...
  • Kang JM, Lee JA, Jang JW, Kim YS, Sunwoo S. ...
  • Magnavita N, Di Stasio E, Capitanelli I, Lops EA, Chirico ...
  • Rezaei F, Hemmati A, Rahmani K, Komasi S. Psychobiological personality ...
  • Zhou SJ, Wang LL, Wang TT, Wang JQ, Chen JX. ...
  • Komasi S, Rezaei F, Hemmati A, Rahmani K, Amianto F, ...
  • World Health Organization. The VPA Approach. 2023. https://www.who.int/groups/violence-prevention-alliance/approach. ...
  • Rutherford A, Zwi AB, Grove NJ, Butchart A. Violence: a ...
  • Buss AH, Perry M. The aggression questionnaire. J Pers Soc ...
  • Komasi S, Saeidi M, Soroush A, Zakiei A. The relationship ...
  • Krahé B, Tomaszewska P, Kuyper L, Vanwesenbeeck I. Prevalence of ...
  • Liu J, Lewis G, Evans L. Understanding aggressive behaviour across ...
  • Wang Y, Fu Y, Ghazi P, Gao Q, Tian T, ...
  • Kamali K, Maleki A, Yazdi SAB, Faghihzadeh E, Hoseinzade Z, ...
  • Poorolajal J, Ebrahimi B, Rezapur-Shahkolai F, Doosti-Irani A, Alizadeh M, ...
  • Sariaslani P, Soroush A, Faridmarandi B, Moarref M, Komasi S. ...
  • Van Veen MM, Lancel M, Beijer E, Remmelzwaal S, Rutters ...
  • Van Veen MM, Lancel M, Şener O, Verkes RJ, Bouman ...
  • Deffenbacher JL, Oetting ER, Thwaites GA, Lynch RS, Baker DA, ...
  • Velotti P, Garofalo C, Callea A, Bucks RS, Roberton T, ...
  • Nicholson LR, Lewis R, Thomas KG, Lipinska G. Influence of ...
  • Vandekerckhove M, Wang YL. Emotion, emotion regulation and sleep: An ...
  • Tu JV. Advantages and disadvantages of using artificial neural networks ...
  • Pallant J. SPSS survival manual: A step by step guide ...
  • Tabachnick BG, Fidell LS. Using multivariate statistics (6th ed.). Boston: ...
  • Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. ...
  • Khosravi A, Emamian MH, Hashemi H, Fotouhi A. Components of ...
  • Samani S. Study of reliability and validity of the Buss ...
  • Neal DJ, Carey KB. A follow-up psychometric analysis of the ...
  • Zakiei A, Khazaie H, Alimoradi M, Kadivarian A, Rajabi-Gilan N, ...
  • Mandrekar JN. Receiver operating characteristic curve in diagnostic test assessment. ...
  • Komasi S, Rezaei F, Hemmati A, Nazari A, Nasiri Y, ...
  • Stafford M, Bendayan R, Tymoszuk U, Kuh D. Social support ...
  • Rosenman R, Tennekoon V, Hill LG. Measuring bias in self-reported ...
  • نمایش کامل مراجع