Predicting the trend of the total index of the Tehran Stock Exchange using an image processing technique
Publish place: Iranian Journal of Finance، Vol: 9، Issue: 1
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 50
This Paper With 31 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJFIFSA-9-1_001
تاریخ نمایه سازی: 13 آذر 1403
Abstract:
This study explores the considerable significance of candlestick chart patterns as a foundational asset within the realm of stock market analysis and prediction. As a graphical representation of historical price movements and patterns, Candlestick charts offer a distinct and valuable perspective for understanding how the financial market operates. This perspective assists us in accurately pinpointing the most advantageous times for making decisions to buy or sell financial securities, such as stocks or bonds. These charts provide insights into market trends and potential trading opportunities. We adopt an innovative approach by harnessing image processing techniques to extract and analyze patterns from Candlestick charts systematically. Our findings underscore the pivotal role of visual data in financial analysis, particularly in times of market volatility and uncertainty. Investors often resort to technical analysis strategies when confronted with erratic market trends, often relying on insights derived from chart-based analysis to guide their decision-making processes. By meticulously extracting essential insights from candlestick charts, our study aims to provide investors with more efficient and less error-prone tools. Ultimately, this endeavor contributes to the enhancement of decision-making precision and the mitigation of risks inherent in participating in the dynamic stock market landscape.
Keywords:
Authors
Roxane Pooresmaeil Niaki
MSc, Department of Accounting and Management, Allameh Tabataba'i University, Tehran, Iran.
Moslem Peymany foroushani
Assistant Prof., Department of Finance and Banking, Allameh Tabataba'i University, Tehran, Iran.
Seyed Morteza Amini
Associate Prof., School of Mathematics, Statistics and Computer Science, University of Tehran, Tehran, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :