Machine Learning and hybrid models for assessing climate change impacts on runoff in the Kasilian catchment, Northern Iran
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 72
This Paper With 7 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ARWW-11-2_002
تاریخ نمایه سازی: 2 بهمن 1403
Abstract:
This study evaluates the performance of Artificial Neural Networks (ANNs), Gene Expression Programming (GEP), and the HEC-HMS models in assessing the impacts of climate change on runoff in the Kasilian catchment, northern Iran. Daily data from ۲۰۰۷ to ۲۰۲۱ were divided into calibration (۲۰۰۷–۲۰۱۸) and validation (۲۰۱۸–۲۰۲۱) periods. The results indicate that GEP and ANN models surpassed the HEC-HMS model across all performance metrics, including RMSE and NSE, when applied individually. Furthermore, hybrid models, integrating HEC-HMS with GEP and HEC-HMS with ANN, exhibited superior performance compared to individual machine learning (ML) or HEC-HMS models. Input variables (temperature and rainfall) were generated using LARS-WG software, incorporating five climate models and the SSP۵۸۵ scenario for future climate change studies. Additionally, these hybrid models were used to forecast runoff changes for the observed period (۲۰۰۷-۲۰۱۸) and future periods (۲۰۳۱-۲۰۵۰ and ۲۰۵۱-۲۰۷۰). The results show a rise in average annual precipitation, extreme precipitation events, and precipitation intensity, implying a higher likelihood of flooding and erosion in the future for the Kasilian Catchment and similar small catchments in north of Iran.
Keywords:
Artificial Neural Networks (ANNs) , Gene expression programming (GEP) , Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS) , Long Ashton Research Station Weather Generator (LARS-WG) , Hybrid model
Authors
Farhad Hajian
Department of Civil Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran.
Hossein Monshizadeh Naeen
Department of Computer Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :