Bearing Response Prediction in Hydrothermal Aged Carbon Fiber Reinforced Epoxy Composite Joints Using Machine Learning Techniques
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 133
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MACS-12-2_008
تاریخ نمایه سازی: 8 بهمن 1403
Abstract:
The work focuses on predicting the bearing response in hydrothermal-aged carbon fiber-reinforced epoxy composite (CFREC) joints through the utilization of machine learning techniques. CFREC are extensively employed in aerospace and other high-performance applications, and their long-term structural integrity is of paramount importance. The hydrothermal aging process can significantly affect the mechanical behavior of such composites, particularly in joint configurations. In this research, an innovative support vector regression approach is present that leverages machine learning algorithms to forecast the bearing response of CFREC joints after undergoing hydrothermal aging. The study encompasses the development of predictive models using a comprehensive dataset of experimental observations. The machine learning technique, support vector regression is trained and evaluated to assess their accuracy and reliability in predicting bearing response. The results show that the overall percent reduction in bearing response, after ۳۰ days of pristine composite bolted joints at ۰ Nm bolt torque shows reductions of ۲۳.۲۲ % at ۶۵°C, respectively. Conversely, under the same conditions, MWCNTs added composite bolted joints exhibit only a ۹.۲% reduction. The predictive models find the value of ۰.۰۰۸۱ RSME and ۰.۸ R۲ respectively through support vector regression confirming that the predicted values lie in between the upper and lower bond.
Keywords:
Authors
Mohit Kumar
Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, ۱۴۰۳۰۱, India
Govind Vashishtha
Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology, Na Grobli ۱۵, ۵۰-۴۲۱ Wroclaw, Poland
Babita Dhiman
Department of Electronics and Communication Engineering, Chandigarh University, Mohali, Punjab, ۱۴۰۳۰۱, India
Sumika Chauhan
Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology, Na Grobli ۱۵, ۵۰-۴۲۱ Wroclaw, Poland
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :