Optimization of Flight Endurance for Turboprop Air Taxis Using Metaheuristic Algorithms

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 151

This Paper With 14 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJE-38-7_019

تاریخ نمایه سازی: 15 بهمن 1403

Abstract:

This study aims to optimize the flight endurance of a ۱۲-passenger turboprop air taxi using two metaheuristic optimization algorithms: Grey Wolf Optimization (GWO) and Ant Colony Optimization (ACO). Initially, the gradient descent method was employed to estimate the aircraft's maximum weight. Subsequently, the aircraft's performance characteristics were utilized as design variables and flight endurance was optimized under specific constraints without altering the physical structure of the aircraft. The optimization process was implemented, and the results were evaluated and compared in terms of performance and efficiency. This research demonstrated that the two mentioned algorithms, utilizing random and collective strategies, were able to enhance the aircraft's efficiency. Additionally, the optimization of flight endurance for three real aircraft—Piper, Beechcraft, and Bombardier—was examined compared to their original endurance. In this context, the Ant Colony Optimization algorithm exhibited better performance than the Grey Wolf Optimization algorithm, which could have a positive impact on flight operations without refueling or the process of finding alternative airports.

Keywords:

Air Taxi , optimization , Gradient Descent , Grey wolf optimization algorithm , Ant Colony Optimization Algorithm

Authors

I. Fozouni Talouki

Department of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran, Iran

A. Toloei

Department of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Bonnefoy PA, editor Simulating air taxi networks. Proceedings of the ...
  • Alaya I, Solnon C, Ghedira K, editors. Ant colony optimization ...
  • نمایش کامل مراجع