Application of predator-prey optimization for task scheduling in cloud computing

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 190

This Paper With 32 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_KJMMRC-14-1_025

تاریخ نمایه سازی: 17 بهمن 1403

Abstract:

Cloud computing environments require scheduling to allocate resources efficiently and ensure optimal performance. It is possible to maximize resource utilization and minimize execution time by scheduling cloud systems effectively. Meta-heuristic algorithms aim to address this NP-hard problem by taking into account these QoS parameters. In order to deal with the task scheduling problem, we utilize a new meta-heuristic algorithm known as Predator-Prey Optimization (PPO). In PPO, predators and preys are modeled and their energy gains are determined by their body mass and interactions. Faster convergence rates enhance PPO's ability to find optimal solutions. The balance between exploration and exploitation makes it suitable for solving real-world problems in unknown spaces. The PPO-based Task Scheduling algorithm (PPOTS) has the goal of reducing execution time and makespan while increasing resource utilization. In this study, the PPOTS algorithm is compared to five well-known meta-heuristic algorithms: Whale Optimization Algorithm (WOA), Salp Swarm Algorithm (SSA), Spotted Hyena Optimization Algorithm (SHO), Grasshopper Optimization Algorithm (GOA), and Sooty Tern Optimization Algorithm (STOA). Furthermore, the proposed PPOTS algorithm was compared with two new meta-heuristic based scheduling algorithms, and showed a better performance than the other two algorithms. Resource utilization and execution cost are enhanced by ۸\% and ۱۵\%, respectively, through the proposed method.

Authors

Zahra Jalali Khalil Abadi

Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran

Behnam Mohammad Hasani zade

Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran

Najme Mansouri

Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran

Mohammad Masoud Javidi

Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Gasmi, K., Dilek, S., Tosun, S., & Ozdemir, S. (۲۰۲۱). ...
  • Maciel, P., Dantas, J., Melo, C., Pereira, P., Oliveira, F., ...
  • Kant, U., & Kumar, V. (۲۰۲۲). IoT network used in ...
  • Buyya, R., & Venugopal, S. (۲۰۰۵). A gentle introduction to ...
  • Mohammad Hasani Zade, B., & Mansouri, N. (۲۰۲۲). PPO: A ...
  • Saravanan, G., Neelakandan, S., Ezhumalai, & P. Maurya, S. (۲۰۲۳). ...
  • Behera, I., & Sobhanayak, S. (۲۰۲۴). Task scheduling optimization in ...
  • Saif, F.A., Latip, R. Hanapi, Z.M., & Sha nah, K. ...
  • Peter, M., & Grance, T. (۲۰۱۱). The NIST de nition ...
  • Jalali Khalil Abadi, Z., Mansouri, N., & Khalouie, M. (۲۰۲۳). ...
  • Singh, H., Tyagi, S., & Kumar, P. (۲۰۲۱). Cloud resource ...
  • Bhandari, G.P., & Gupta, R. (۲۰۱۹). An overview of edge/cloud ...
  • Sriram, G.K. (۲۰۲۲). Edge computing vs. cloud computing: An overview ...
  • Ghafari, R., Hassani Kabutarkhani, F., & Mansouri, N. (۲۰۲۲). Task ...
  • Mansouri, N., & Javidi, M.M. (۲۰۲۰). A review of data ...
  • Pradeep, K., Gobalakrishnan, N., Manikandan, N., Javid Ali, L., Parkavi, ...
  • Gray, M.R., and Johnson, D.S. (۱۹۷۹). Computers and intractability: A ...
  • Pradhan, R., & Satapathy, S.C. (۲۰۲۳). Particle Swarm Optimization-based energy-aware ...
  • Indhumathi, R., Amuthabala, K., Kiruthiga, G., Yuvaraj, N., & Pandey, ...
  • Prem Jacob, T., & Pradeep, K. (۲۰۱۹). A multi objective ...
  • Abd Elaziz, M., & Attiya, I. (۲۰۲۱). An improved Henry ...
  • Huang, X., Li, C., Chen, H., & An, D. (۲۰۲۰). ...
  • Vijarania, M., Agrawal, A., & Sharma, M.M. (۲۰۲۱). Task scheduling ...
  • Su, Y., Bai, Z., & Xie, D. (۲۰۲۱). The optimizing ...
  • Tripathi, G., & Kumar, R. (۲۰۲۲). A heuristic-based task scheduling ...
  • Krishnan, S., & Rajalakshmi, N.R. (۲۰۲۲). A cost-optimized data parallel ...
  • Ajmal, M.S., Iqbal, Z., Khan, F.Z., Ahmad, M., Ahmad, I., ...
  • Mirjalili, S.A., & Lewis, A. (۲۰۱۶). The whale optimization algorithm. ...
  • Mirjalili, S.A., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., ...
  • Dhiman, G., & Kumar, V. (۲۰۱۷). Spotted Hyena Optimizer: A ...
  • Saremi, S., Mirjalili, S.A., & Lewis, A. (۲۰۱۷). Grasshopper Optimization ...
  • Dhiman, G., & Kumar, V. (۲۰۱۹). STOA: A bio-inspired based ...
  • Zhang, Y., & Wang, J. (۲۰۲۴). Enhanced Whale Optimization Algorithm ...
  • Damera, V.K., Vanitha, G., Indira, B., Sirisha, G., & Vatambeti, ...
  • نمایش کامل مراجع