Application of predator-prey optimization for task scheduling in cloud computing
Publish place: Journal of Mahani Mathematical Research، Vol: 14، Issue: 1
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 191
This Paper With 32 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_KJMMRC-14-1_025
تاریخ نمایه سازی: 17 بهمن 1403
Abstract:
Cloud computing environments require scheduling to allocate resources efficiently and ensure optimal performance. It is possible to maximize resource utilization and minimize execution time by scheduling cloud systems effectively. Meta-heuristic algorithms aim to address this NP-hard problem by taking into account these QoS parameters. In order to deal with the task scheduling problem, we utilize a new meta-heuristic algorithm known as Predator-Prey Optimization (PPO). In PPO, predators and preys are modeled and their energy gains are determined by their body mass and interactions. Faster convergence rates enhance PPO's ability to find optimal solutions. The balance between exploration and exploitation makes it suitable for solving real-world problems in unknown spaces. The PPO-based Task Scheduling algorithm (PPOTS) has the goal of reducing execution time and makespan while increasing resource utilization. In this study, the PPOTS algorithm is compared to five well-known meta-heuristic algorithms: Whale Optimization Algorithm (WOA), Salp Swarm Algorithm (SSA), Spotted Hyena Optimization Algorithm (SHO), Grasshopper Optimization Algorithm (GOA), and Sooty Tern Optimization Algorithm (STOA). Furthermore, the proposed PPOTS algorithm was compared with two new meta-heuristic based scheduling algorithms, and showed a better performance than the other two algorithms. Resource utilization and execution cost are enhanced by ۸\% and ۱۵\%, respectively, through the proposed method.
Keywords:
Authors
Zahra Jalali Khalil Abadi
Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran
Behnam Mohammad Hasani zade
Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran
Najme Mansouri
Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran
Mohammad Masoud Javidi
Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :