Euler Operational Matrix of Integration and Collocation Method for Solving Functional Integral Equations

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 180

This Paper With 27 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_SCMA-22-1_016

تاریخ نمایه سازی: 17 بهمن 1403

Abstract:

In this paper, the functional Volterra integral equations of the Hammerstein type are studied. First, some conditions that ensure the existence and uniqueness of the solutions to these equations within the space of square-integrable functions are established and then the Euler operational matrix of integration is constructed and applied within the collocation method for approximating the solutions. This approach transforms the integral equation into a set of nonlinear algebraic equations, which can be efficiently solved by employing standard numerical methods like Newton's method or Picard iteration. One significant advantage of this method lies in its ability to avoid the need for direct integration to discretize the integral operator. Error estimates are provided and two illustrative examples are included to demonstrate the method’s effectiveness and practical applicability.

Authors

Sohrab Bazm

Department of Mathematics, Faculty of Science, University of Maragheh, ۵۵۱۳۶-۵۵۳ Maragheh, Iran.

Fatemeh Pahlevani

Department of Mathematics, Faculty of Science, University of Maragheh, ۵۵۱۳۶-۵۵۳ Maragheh, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • M. Abramowitz and I.A. Stegun, Handbook of mathematical functions with ...
  • I.K. Argyros, Quadratic equations and applications to Chandrasekhar’s and related ...
  • K.E. Atkinson and J. Flores, The discrete collocation method for ...
  • J.S. Azevedo, A sigmoid method for some nonlinear Fredholm integral ...
  • J.S. Azevedo, S.P. Oliveira, S.M. Afonso and M. P.G. da ...
  • J.S. Azevedo, S.P. Oliveira and A.M. Rocha, Spectral element approximation ...
  • J. Banaś and A. Chlebowicz, On existence of integrable solutions ...
  • J. Banaś and Z. Knap, Integrable solutions of a functional-integral ...
  • S. Bazm, Bernoulli polynomials for the numerical solution of some ...
  • S. Bazm, Numerical solution of a class of nonlinear twodimensional ...
  • S. Bazm, Solution of nonlinear Volterra-Hammerstein integral equations using alternative ...
  • S. Bazm and M.R. Azimi, Numerical solution of a class ...
  • S. Bazm and E. Babolian, A direct method to solve ...
  • S. Bazm and A. Hosseini, Numerical solution of nonlinear integral ...
  • S. Bazm, A. Hosseini, J.S. Azevedo and F. Pahlevani, Existence, ...
  • S. Bazm and P. Lima, Numerical solution of nonlinear second ...
  • S. Bazm, P. Lima and S. Nemati, Analysis of the ...
  • S. Bazm, P. Lima and S. Nemati, Discretization methods and ...
  • H. Brunner, On implicitly linear and iterated collocation methods for ...
  • H. Brunner, Implicitly linear collocation methods for nonlinear Volterra equations, ...
  • H. Brunner, Collocation methods for Volterra integral and related functional ...
  • S. Chakraborty and G. Nelakanti, Approximated superconvergent methods for Volterra ...
  • Gi-Sang Cheon, A note on the Bernoulli and Euler polynomials, ...
  • C. Corduneanu, Integral equations and applications, Cambridge University Press, Cambridge, ...
  • K. Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin, ۱۹۸۵ ...
  • L.M. Delves and J.L. Mohamed, Computational methods for integral equations, ...
  • G. Emmanuele, About the existence of integrable solutions of a ...
  • G. Emmanuele, Integrable solutions of a functional-integral equation, J. Integral ...
  • J. Hale, Theory of functional differential equations. Applied Mathematical Sciences, ...
  • H.A. Hamid and W. Al Sayed, Integrable solutions of a ...
  • G.Q. Han, Asymptotic error expansion of a collocation-type methodfor Volterra-Hammerstein ...
  • S. Hu, M. Khavanin and W. Zhuang, Integral equations arising ...
  • A. Karoui and A. Jawahdou, Existence and approximate Lp and ...
  • N.A. Khan, O.I. Khalaf, C.A.T. Romero, M. Sulaiman and M.A. ...
  • T. Kim, S.H. Rim, D.V. Dolgy and S.H. Lee, Some ...
  • T. Kim, Euler numbers and polynomials associated with zeta functions, ...
  • E. Kreyszig, Introductory functional analysis with applications. Wiley Classics Library, ...
  • S. Kumar and I.H. Sloan, A new collocation-type method for ...
  • M. Kwapisz and J. Turo, On the existence and uniqueness ...
  • P.K. Kythe and P. Puri, Computational methods for linear integral ...
  • T.D. Le, C. Moyne, M.A. Murad and S.A. Lima, A ...
  • Y. Li and W. Zhao, Haar wavelet operational matrix of ...
  • K. Maleknejad, H. Derili and S. Sohrabi, Numerical solution of ...
  • K. Nowicka, On the existence of solutions for some integralfunctional ...
  • C. Nwaigwe and S. Micula, Fast and accurate numerical algorithm ...
  • F.W. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark, NIST ...
  • D. O’Regan, Existence results for nonlinear integral equations, J. Math. ...
  • W. Pogorzelski, Integral equations and their applications, Vol. I. International ...
  • P. Rahimkhani, Y. Ordokhani and E. Babolian, Müntz-Legendre wavelet operational ...
  • G.P. Rao and T. Srinivasan, Analysis and synthesis of dynamic ...
  • A.C. Rocha, M.A. Murad, C. Moyne, S.P. Oliveira and T.D. ...
  • A.M. Rocha, J.S. Azevedo, S.P. Oliveira and M.R. Correa, Numerical ...
  • M.A. Taoudi, Integrable solutions of a nonlinear functional integral equation ...
  • S. Torkaman, M. Heydari and G.B. Loghmani, An operational matrix ...
  • F. Wang, A fixed point theorem for nonautonomous type superposition ...
  • W. Wang, Some results on sums of products of bernoulli ...
  • X. Xiang, X. Ma, M. Ma, W. Wu and L. ...
  • P.T. Young, Congruences for bernoulli, euler and stirling numbers, J. ...
  • S.A. Yousefi and M. Behroozifar, Operational matrices of Bernstein polynomials ...
  • P.P. Zabrejko, A.I. Koshelev, M.A. Krasnosel’skii, S.G. Mikhlin, L.S. Rakovshchik ...
  • F. Zare, M. Heydari and G.B. Loghmani, Convergence analysis of ...
  • نمایش کامل مراجع