Euler Operational Matrix of Integration and Collocation Method for Solving Functional Integral Equations
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 180
This Paper With 27 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_SCMA-22-1_016
تاریخ نمایه سازی: 17 بهمن 1403
Abstract:
In this paper, the functional Volterra integral equations of the Hammerstein type are studied. First, some conditions that ensure the existence and uniqueness of the solutions to these equations within the space of square-integrable functions are established and then the Euler operational matrix of integration is constructed and applied within the collocation method for approximating the solutions. This approach transforms the integral equation into a set of nonlinear algebraic equations, which can be efficiently solved by employing standard numerical methods like Newton's method or Picard iteration. One significant advantage of this method lies in its ability to avoid the need for direct integration to discretize the integral operator. Error estimates are provided and two illustrative examples are included to demonstrate the method’s effectiveness and practical applicability.
Keywords:
Authors
Sohrab Bazm
Department of Mathematics, Faculty of Science, University of Maragheh, ۵۵۱۳۶-۵۵۳ Maragheh, Iran.
Fatemeh Pahlevani
Department of Mathematics, Faculty of Science, University of Maragheh, ۵۵۱۳۶-۵۵۳ Maragheh, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :