Neural Network-Based Inverse Model for Non-Invasive Estimation of Corneal Mechanical Properties

Publish Year: 1403
نوع سند: مقاله کنفرانسی
زبان: English
View: 135

متن کامل این Paper منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل Paper (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

RESIST02_028

تاریخ نمایه سازی: 9 اسفند 1403

Abstract:

This study presents a novel approach to estimate corneal mechanical properties using non-contact tonometry data and machine learning techniques. A neural network-based inverse model was developed to predict Ogden material parameters from corneal apex displacement data. The model was trained on simulated data generated via finite element analysis. Rather than employing standard evaluation metrics, the mechanical behavior of the material model was integrated into the model as the loss function, which minimizes the difference in stress fields between predicted and reference data. The method demonstrated strong performance in accurately predicting the mechanical response of the cornea. This approach offers a promising non-invasive diagnostic tool, bridging the gap between clinical measurements and complex biomechanical properties.

Authors

Seyed Sadjad Abedi-Shahri

Department of Biomedical Engineering, Isfahan University, Isfahan, Iran

Mitra Baradari

Department of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran

Iman Zoljanahi Oskui

Department of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran